98%
921
2 minutes
20
Because of the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover antibacterial agents. Here, we design and synthesize a compound of TPA2PyBu that kills both Gram-negative and Gram-positive bacteria with an undetectably low drug resistance. Comprehensive analyses reveal that the antimicrobial activity of TPA2PyBu proceeds via a unique dual mechanism by damaging bacterial membrane integrity and inducing DNA aggregation. TPA2PyBu could provide imaging specificity that differentiates bacterial infection from inflammation and cancer. High in vivo treatment efficacy of TPA2PyBu was achieved in methicillin-resistant infection mouse models. This promising antimicrobial agent suggests that combining multiple mechanisms of action into a single molecule can be an effective approach to address challenging bacterial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988409 | PMC |
http://dx.doi.org/10.1126/sciadv.adp9448 | DOI Listing |
Nanoscale
September 2025
Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore.
The rapid increase in multidrug-resistant (MDR) bacteria and biofilm-associated infections has intensified the global need for innovative antimicrobial strategies. Phage therapy offers promising precision against MDR pathogens by utilizing the natural ability of phages to specifically infect and lyse bacteria. However, their clinical application is hampered by challenges such as narrow host range, immune clearance and limited efficacy within biofilms.
View Article and Find Full Text PDFSwiss Med Wkly
May 2025
Mycobacterial and Migrant Health Research Group, University of Basel Children's Hospital Basel and Department of Clinical Research, University of Basel, Basel, Switzerland.
Aim: Globally, tuberculosis incidence shows notable sex disparity, with higher rates observed in males. While this pattern is well documented in adults from high-incidence countries, the influence of sex on tuberculosis incidence in children and adolescents, particularly in low-incidence settings, remains unclear. This study investigated sex-specific tuberculosis incidence rates across all age groups, focusing on adolescents, in a low-incidence country.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
Periprosthetic joint infection (PJI) represents a serious complication following joint arthroplasty, and it often results in implant failure, prolonged morbidity, and additional healthcare burdens. Current clinical strategies for PJI treatment face obstacles, including antibiotic resistance, high recurrence rate, and compromised bone repair. To address these challenges, a novel nanozyme-based coordination compound designated as W-GA-Van@Zn is developed.
View Article and Find Full Text PDFFASEB J
September 2025
Intensive Care Unit, Dongguan Traditional Chinese Medicine Hospital, Dongguan, Guangdong Province, China.
This study aimed to evaluate the quality of multidisciplinary team (MDT) management in healthcare-associated infection (HAI) prevention and control, as well as its impact on multidrug-resistant organism (MDRO) infections. This was a retrospective, single-center study with a small sample size. A total of 400 patients admitted to the Departments of Critical Care Medicine or Orthopedics between January 2022 and December 2023 were divided into a control group (n = 200, receiving conventional HAI management) and an experimental group (n = 200, undergoing MDT management).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200070, China.
Wound infections challenge clinical medicine, and developing novel therapies is critically important in overcoming antimicrobial resistance and an off-balanced immune microenvironment. Electrical stimulation as a biocompatible, easy-to-operate, and controllable technique has great potential in eradicating pathogens and modulating the immune system. However, safe and soft platforms that integrate both bactericidal and immunological modulatory effects of electrical stimulation are rarely reported.
View Article and Find Full Text PDF