Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large-sized lead sulfide quantum dots (PbS QDs) offer strong absorption in the infrared, making them suitable for bottom cells in tandem devices. However, current QD-based tandem devices underperform compared to single junction devices. This review focuses on defect information and passivation strategies in large-sized QD solar cells. Defects from oxidation, polydispersity, and nonbonding sites on the (001) facet during QD synthesis are examined. Ligand-exchange-related defects such as tangled atoms, incomplete passivation, and excess ligands are analyzed. Surface and interface defects resulting from solar cell fabrication are also discussed. Strategies including cation exchange, thermodynamic growth, kinetic growth, and mixed halide ligands are summarized. Post-treatment approaches could also help to address surface and interface defects. Large-sized PbS-QDs show promise as infrared radiation absorbers. Overcoming defects and implementing effective passivation strategies are crucial for single junction and tandem solar cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935977PMC
http://dx.doi.org/10.1002/smsc.202300062DOI Listing

Publication Analysis

Top Keywords

solar cells
12
passivation strategies
12
quantum dots
8
defect passivation
8
strategies large-sized
8
tandem devices
8
single junction
8
surface interface
8
interface defects
8
defects
5

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

Long-Lived Charge-Transfer State and Interfacial Lock in Double-Cable Conjugated Polymers Enable Efficient and Stable Organic Solar Cells.

Angew Chem Int Ed Engl

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.

View Article and Find Full Text PDF

High Light Utilization and Color Rendering in Vacuum-Deposited Semitransparent Perovskite Solar Cells.

Adv Mater

September 2025

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Spain.

Formamidinium lead iodide perovskite compositions have a low open circuit voltage deficit and thus a higher power conversion efficiency (PCE) potential. However, their low bandgap makes it difficult to achieve a semitransparent perovskite solar cell (ST-PSC) with a high average visible transmittance (AVT) and thus, a high light utilization efficiency (LUE). Attaining a high AVT in such low bandgap perovskite‑based semitransparent solar cells requires the perovskite layer to be very thin (thickness < ≈100 nm) and the rear electrode to be made of a transparent conductive oxide.

View Article and Find Full Text PDF

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF

This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.

View Article and Find Full Text PDF