Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This review explores state of the art machine learning and deep learning models for peptide property prediction in mass spectrometry-based proteomics, including, but not limited to, models for predicting digestibility, retention time, charge state distribution, collisional cross section, fragmentation ion intensities, and detectability. The combination of these models enables not only the in silico generation of spectral libraries but also finds many additional use cases in the design of targeted assays or data-driven rescoring. This review serves as both an introduction for newcomers and an update for experienced researchers aiming to develop accessible and reproducible models for peptide property predictions. Key limitations of the current models, including difficulties in handling diverse post-translational modifications and instrument variability, highlight the need for large-scale, harmonized datasets, and standardized evaluation metrics for benchmarking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076536PMC
http://dx.doi.org/10.1002/pmic.202400398DOI Listing

Publication Analysis

Top Keywords

peptide property
12
property prediction
8
prediction mass
8
state art
8
models peptide
8
models
6
mass spectrometry
4
spectrometry introduction
4
introduction state
4
art models
4

Similar Publications

This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.

View Article and Find Full Text PDF

Incorporating non-natural amino acids (NNAAs) into peptides enhances therapeutic properties, including binding affinity, metabolic stability, and half-life time. The pursuit of novel NNAAs for improved peptide designs faces the challenge of effective synthesis of these building blocks as well as the entire peptide itself. Solid-Phase Peptide Synthesis (SPPS) is an essential technology for the automated assembly of peptides with NNAAs, necessitating careful protection for effective coupling of amino acids in the peptide chain.

View Article and Find Full Text PDF

Unlocking the nutritional and bioactive potential of sheep milk: implications for food and health.

Food Funct

September 2025

Department of Animal Nutrition, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.

Sheep milk has gained increasing attention for its compositional similarity to human milk and its abundance of bioactive compounds with nutritional and therapeutic potential. It is rich in proteins, essential fatty acids, vitamins, minerals, immunoglobulins, and hormones, as well as peptides and oligosaccharides with antiviral, antibacterial, anti-inflammatory, and immune-modulatory effects. Despite these benefits, the literature remains fragmented, with limited integration of data on the mechanisms by which these components influence health outcomes, and few comprehensive comparisons with other mammalian milks.

View Article and Find Full Text PDF

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF

ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.

View Article and Find Full Text PDF