98%
921
2 minutes
20
The integration of Artificial Intelligence (AI) in endoscopic ultrasound (EUS) represents a transformative advancement in the early detection and management of biliopancreatic lesions. This review highlights the current state of AI-enhanced EUS (AI-EUS) for diagnosing solid and cystic pancreatic lesions, as well as biliary diseases. AI-driven models, including machine learning (ML) and deep learning (DL), have shown significant improvements in diagnostic accuracy, particularly in distinguishing pancreatic ductal adenocarcinoma (PDAC) from benign conditions and in the characterization of pancreatic cystic neoplasms. Advanced algorithms, such as convolutional neural networks (CNNs), enable precise image analysis, real-time lesion classification, and integration with clinical and genomic data for personalized care. In biliary diseases, AI-assisted systems enhance bile duct visualization and streamline diagnostic workflows, minimizing operator dependency. Emerging applications, such as AI-guided EUS fine-needle aspiration (FNA) and biopsy (FNB), improve diagnostic yields while reducing errors. Despite these advancements, challenges remain, including data standardization, model interpretability, and ethical concerns regarding data privacy. Future developments aim to integrate multimodal imaging, real-time procedural support, and predictive analytics to further refine the diagnostic and therapeutic potential of AI-EUS. AI-driven innovation in EUS stands poised to revolutionize pancreatico-biliary diagnostics, facilitating earlier detection, enhancing precision, and paving the way for personalized medicine in gastrointestinal oncology and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpg.2025.101975 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
Curr Opin Neurol
October 2025
Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Munich, Germany.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Geriatric Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008.
Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.
View Article and Find Full Text PDFDermatitis
September 2025
From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.
View Article and Find Full Text PDFDalton Trans
September 2025
School of Education, Can Tho University, 3-2 Road, Can Tho City 900000, Vietnam.
Enhancement of the performance of lithium-ion batteries is a critical strategy for addressing the challenges associated with cost and raw materials. By doping boron (B), aluminum (Al), and aluminum/boron (Al/B) utilizing the sol-gel method, we demonstrate a substantial improvement in the cycling performance of Ni-rich lithium nickel manganese cobalt oxide (NMC) as an electrode. While the initial specific capacitance of the doped samples may be lower than that of the pristine NMC, these samples demonstrate a notable increase in specific capacitance during subsequent cycles, reaching a peak around the 10 cycle and nearing the highest specific capacitance observed in NMC cathodes.
View Article and Find Full Text PDF