Role of a low-molecular-weight polysaccharide from Boletus edulis Bull: Fr. in modulating gut microbiota and metabolic disorders.

Int J Biol Macromol

School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to investigate the effects of Boletus edulis Bull: Fr. polysaccharide (BEP), extracted using a deep eutectic solvent based on l-lactic acid and glycine, on glucose and lipid metabolism in high-fat diet (HFD)-fed mice. The primary mechanism by which BEP improves symptoms of glucose and lipid imbalances involves the modulation of gut microbiota. Key beneficial bacteria, including S24-7, Lachnospiraceae, [Prevotella], and Lactobacillus, were significantly enriched in the intestines of BEP-treated mice, with abundances 2.48-, 1.62-, 6.33- and 2.60-fold higher, respectively, compared to the HFD group. In contrast, the abundance of harmful bacteria, particularly Desulfovibrio, was reduced by 1.81-fold. These microbial shifts contributed to the alleviation of intestinal mucus layer damage and a 50 % reduction in serum lipopolysaccharide (LPS) levels, a key driver of systemic inflammation, compared to the HFD group. As a result, BEP effectively inhibited LPS-induced activation of the hepatic TLR4/Myd88/MAPK signaling pathway, thereby normalizing the expression of proteins related to glucose and lipid metabolism. A fecal microbiota transplantation study further demonstrated that the gut microbiota changes induced by BEP were central to its anti-metabolic syndrome effects. Overall, BEP may serve as a dietary supplement for preventing and treating diet-induced metabolism disorders by targeting the gut microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.142789DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
glucose lipid
12
boletus edulis
8
edulis bull
8
lipid metabolism
8
compared hfd
8
hfd group
8
microbiota
5
bep
5
role low-molecular-weight
4

Similar Publications

EVOLVING TRENDS AND EMERGING THEMES IN GUT MICROBIOTA RESEARCH: A COMPREHENSIVE BIBLIOMETRIC ANALYSIS (2015-2024).

Arq Gastroenterol

September 2025

The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.

Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.

View Article and Find Full Text PDF

Subcutaneous vedolizumab dose intensification in inflammatory bowel disease patients: the OPTI-VEDO multicenter study from the GETAID.

J Crohns Colitis

September 2025

Department of Gastroenterology, University Hospital of Marseille Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.

Background And Aims: While this strategy is frequently used for other biologics, real-world evidence on subcutaneous (SC) vedolizumab (VDZ) dose intensification in inflammatory bowel disease (IBD) is lacking. This study aimed to assess the effectiveness and safety of SC VDZ intensification.

Methods: We conducted a retrospective study in 25 centers including all patients with active ulcerative colitis (UC) or Crohn's disease (CD) (defined by PRO2), and incomplete or loss of response to SC VDZ 108mg EOW when the drug was intensified.

View Article and Find Full Text PDF

Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).

View Article and Find Full Text PDF

From Gut Inflammation to Cardiovascular Conflagration: Mapping IBD's Cardiometabolic Risks.

Curr Atheroscler Rep

September 2025

Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.

Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.

Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.

View Article and Find Full Text PDF