Discovery of naturally inspired antimicrobial peptides using deep learning.

Bioorg Chem

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang key laboratory of green, low-carbon, and efficient development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China; Binjiang Institute

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-ribosomal peptides (NRPs) are promising lead compounds for novel antibiotics. Bioinformatic mining of silent microbial NRPS gene clusters provide crucial insights for the discovery and de novo design of bioactive peptides. Here, we describe the efficient discovery and antibacterial evaluation of novel peptides inspired by metabolite scaffolds encoded by NRPS gene clusters from 216,408 bacterial genomes. In total, 335,024 NRPS gene clusters were identified and dereplicated, yielding 328 unique peptide scaffolds. Using deep learning-based scoring, five antimicrobial peptide candidates (P1-P5) were synthesized via solid-phase chemical synthesis. Among them, peptide P2 exhibited potent antibacterial activity with MIC values of 1-2 μM against two pathogenic strains. Subsequent amino acid optimization guided by deep learning algorithms produced P2.2, a derivative with significantly enhanced antibacterial activity. Mechanistic studies revealed that P2.2 disrupts bacterial membranes and increases permeability by modulating proteins involved in the type VI and III secretion systems. Furthermore, P2.2 demonstrated synergistic effects when combined with conventional antibiotics and exhibited reduced hemolytic activity, improving its therapeutic potential. These findings underscore the immense potential of deep learning to accelerate the discovery of naturally inspired antimicrobial peptides from silent biosynthetic gene clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2025.108444DOI Listing

Publication Analysis

Top Keywords

gene clusters
16
deep learning
12
nrps gene
12
discovery naturally
8
naturally inspired
8
inspired antimicrobial
8
antimicrobial peptides
8
antibacterial activity
8
peptides
5
discovery
4

Similar Publications

Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

Clusters of deep intronic RbFox motifs embedded in large assembly of splicing regulators sequences regulate alternative splicing.

PLoS Genet

September 2025

Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.

The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF