Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Monitoring liver stiffness is essential for managing chronic liver disease, which poses a major public health challenge. Shear wave elastography (SWE), a non-invasive ultrasound-based technique, is commonly used to quantify liver stiffness. However, its performance can be compromised in individuals with higher body mass indices (BMIs) due to increased ultrasound absorption and distortion. Increasing the intensity of the ultrasound push beam could potentially improve signal quality, but regulatory limits currently restrict this due to safety concerns. This pilot study investigated the efficacy of increasing the push pulse mechanical index (MI) from a conventional value of 1.4 to 2.5 toward improving signal quality, and reducing measurement variability and failure rates.

Methods: Healthy volunteers (N=22) stratified by BMI underwent SWE with conventional and increased MI push pulses. The resulting data were processed with conventional SWE algorithms, and the signal and measurement quality of the results were analyzed.

Results: We found that the higher MI improved the signal-to-noise ratio by 4.6 dB (p<10, 95% confidence interval: 3.4-5.8 dB) and reduced the measurement's coefficient of variation by 13% (p<10, 95% confidence interval: 5.8%-20.3%), enhancing the success rate of SWE examinations, especially for subjects with a BMI over 30. Liver function tests before and after the SWE examinations showed no signs of bioeffects or harm based on serum biomarkers.

Conclusion: These results suggest that increasing the push pulse MI to 2.5 improves the diagnostic utility of SWE, particularly for individuals with a higher BMI, without introducing significant additional risk. This approach could further enhance SWE's vital role in the monitoring of chronic liver disease at a population scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2025.03.003DOI Listing

Publication Analysis

Top Keywords

shear wave
8
wave elastography
8
pilot study
8
liver stiffness
8
signal quality
8
increased mechanical
4
mechanical improves
4
improves shear
4
elastography pilot
4
signal
4

Similar Publications

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

The objective of this study was to assess the link between postpartum blood loss and placental elastography in multiparous pregnancies.In this prospective study, multiparous women who delivered at term between 2020 and 2024 were included. During the obstetric ultrasonography procedure, placental elastography was evaluated through the utilization of the shear wave elastography (SWE) technique.

View Article and Find Full Text PDF

Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.

View Article and Find Full Text PDF

Background: Hepatic sinusoidal obstruction syndrome (SOS), or veno-occlusive disease (VOD), is a severe complication following hematopoietic stem cell transplantation (HSCT), often leading to liver dysfunction and poor outcomes if not detected early. Traditional diagnostic methods, including ultrasound and liver biopsy, have limitations in sensitivity and feasibility. Non-invasive elastography techniques, such as transient elastography (TE) and shear-wave elastography (SWE), offer a promising alternative by quantitatively assessing liver stiffness.

View Article and Find Full Text PDF

Multiparametric Ultrasound for Preoperative Assessment of Parotid Tumors: A Novel Diagnostic Pathway.

Head Neck

September 2025

Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Background: Accurate preoperative differentiation of parotid gland tumors (PGTs) is essential for facial nerve preservation. This study evaluates a novel, real-time multiparametric ultrasound (mpUS) approach combining B-mode, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS), based on qualitative image interpretation.

Methods: Eighty-nine patients with 91 PGTs underwent mpUS prior to surgery or ultrasound-guided biopsy.

View Article and Find Full Text PDF