Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Optical coherence tomography (OCT) is a widely used imaging technology in ophthalmic clinical practice, providing non-invasive access to high-resolution retinal images. Segmentation of anatomical structures and pathological lesions in retinal OCT images, directly impacts clinical decisions. While commercial OCT devices segment multiple retinal layers in healthy eyes, their performance degrades severely under pathological conditions. In recent years, the rapid advancements in deep learning have significantly driven research in OCT image segmentation. This review provides a comprehensive overview of the latest developments in deep learning-based segmentation methods for retinal OCT images. Additionally, it summarizes the medical significance, publicly available datasets, and commonly used evaluation metrics in this field. The review also discusses the current challenges faced by the research community and highlights potential future directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2025.102539 | DOI Listing |