Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supported metal or oxide nanostructures catalyze many industrial reactions, where the interaction of metal or oxide overlayer with its support can have a substantial influence on catalytic performance. In this work, we show that small Pt species can be well stabilized on CeO under both H-containing and O-containing atmospheres but sintering happens on SiO, indicating that CeO is active whereas SiO is inert in Pt-support interaction. On the other hand, Co oxide (CoO) supported on SiO can maintain a low-valence Co state both in air and during CO hydrogenation to CO, indicating a strong interaction of CoO with SiO. However, the CoO overlayer has a weak interaction with CeO and is easily reduced to metallic Co during the CO hydrogenation reaction producing CH. Thus, SiO is active, but CeO is inert for CoO-support interaction, which is counter to the common sense from the Pt/oxide systems. Systematic studies in stability behaviors of Pt and CoO nanocatalysts supported on various oxides show that the reducibility of the oxide supports can be used to describe the catalyst-support interaction. Oxide supports with high reducibility or low metal-oxygen bond strength interact strongly with Pt and other metals, showing high metalphilicity. Conversely, oxide supports with low reducibility or high metal-oxygen bond strength have strong interaction with CoO and other oxides, having high oxidephilicity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c17075DOI Listing

Publication Analysis

Top Keywords

oxide supports
12
interaction
9
oxide
8
interaction metal
8
interaction oxide
8
metal oxide
8
strong interaction
8
interaction coo
8
metal-oxygen bond
8
bond strength
8

Similar Publications

Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.

View Article and Find Full Text PDF

Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.

View Article and Find Full Text PDF

Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).

Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.

View Article and Find Full Text PDF

Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF