98%
921
2 minutes
20
Supported metal or oxide nanostructures catalyze many industrial reactions, where the interaction of metal or oxide overlayer with its support can have a substantial influence on catalytic performance. In this work, we show that small Pt species can be well stabilized on CeO under both H-containing and O-containing atmospheres but sintering happens on SiO, indicating that CeO is active whereas SiO is inert in Pt-support interaction. On the other hand, Co oxide (CoO) supported on SiO can maintain a low-valence Co state both in air and during CO hydrogenation to CO, indicating a strong interaction of CoO with SiO. However, the CoO overlayer has a weak interaction with CeO and is easily reduced to metallic Co during the CO hydrogenation reaction producing CH. Thus, SiO is active, but CeO is inert for CoO-support interaction, which is counter to the common sense from the Pt/oxide systems. Systematic studies in stability behaviors of Pt and CoO nanocatalysts supported on various oxides show that the reducibility of the oxide supports can be used to describe the catalyst-support interaction. Oxide supports with high reducibility or low metal-oxygen bond strength interact strongly with Pt and other metals, showing high metalphilicity. Conversely, oxide supports with low reducibility or high metal-oxygen bond strength have strong interaction with CoO and other oxides, having high oxidephilicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c17075 | DOI Listing |
Funct Integr Genomics
September 2025
The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China.
Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).
Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.
Small
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.
View Article and Find Full Text PDF