98%
921
2 minutes
20
The widespread application of machine learning (ML) is profoundly transforming traditional research methods in materials science and chemistry, bringing new opportunities while also posing significant challenges and risks. Improper use of ML methods can lead to biased and misleading research outcomes. This review outlines the application processes of ML in the fields of materials science and chemistry, providing an in-depth analysis of potential issues at each stage with case studies, including data management, model construction, evaluation, and shared risks in data reporting. We emphasize the necessity of standardized use of ML and highlight the current crises faced in ML applications in scientific research. This review also summarizes a series of strategies to ensure the reliability and scientific validity of research results. It aims to offer practical guidance to researchers, helping them leverage the advantages of ML while applying these tools in a scientifically sound and compliant manner, avoiding common pitfalls, and promoting more rigorous research practices in materials science and chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cp00373c | DOI Listing |
J Appl Microbiol
September 2025
Graduate Institute of Medical Sciences, National Defense Medical University, Taipei City 114201, Taiwan (R.O.C.).
Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.
Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.
Org Lett
September 2025
Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
A fused octapyrrolylanthracene, representing a nonplanar pyrrole-fused aza-nanographene with two deep gulf-edge regions, was readily synthesized and found to exhibit a ladder-shaped bent structure. Electrochemical studies revealed reversible multielectron oxidation up to four electrons. Stepwise oxidation with AgPF or I afforded a singlet diradical dication and a closed-shell aromatic tetracation.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.
The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100091, China.
l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.
View Article and Find Full Text PDF