98%
921
2 minutes
20
Background: Breast cancer is one of the most common malignancies among women worldwide. Patients who do not achieve a pathological complete response (pCR) or a clinical complete response (cCR) post-neoadjuvant chemotherapy (NAC) typically have a worse prognosis compared to those who do achieve these responses.
Objective: This study aimed to develop and validate a random survival forest (RSF) model to predict survival risk in patients with breast cancer who do not achieve a pCR or cCR post-NAC.
Methods: We analyzed patients with no pCR/cCR post-NAC treated at the First Affiliated Hospital of Chongqing Medical University from January 2019 to 2023, with external validation in Duke University and Surveillance, Epidemiology, and End Results (SEER) cohorts. RSF and Cox regression models were compared using the time-dependent area under the curve (AUC), the concordance index (C-index), and risk stratification.
Results: The study cohort included 306 patients with breast cancer, with most aged 40-60 years (204/306, 66.7%). The majority had invasive ductal carcinoma (290/306, 94.8%), with estrogen receptor (ER)+ (182/306, 59.5%), progesterone receptor (PR)- (179/306, 58.5%), and human epidermal growth factor receptor 2 (HER2)+ (94/306, 30.7%) profiles. Most patients presented with T2 (185/306, 60.5%), N1 (142/306, 46.4%), and M0 (295/306, 96.4%) staging (TNM meaning "tumor, node, metastasis"), with 17.6% (54/306) experiencing disease progression during a median follow-up of 25.9 months (IQR 17.2-36.3). External validation using Duke (N=94) and SEER (N=2760) cohorts confirmed consistent patterns in age (40-60 years: 59/94, 63%, vs 1480/2760, 53.6%), HER2+ rates (26/94, 28%, vs 935/2760, 33.9%), and invasive ductal carcinoma prevalence (89/94, 95%, vs 2506/2760, 90.8%). In the internal cohort, the RSF achieved significantly higher time-dependent AUCs compared to Cox regression at 1-year (0.811 vs 0.763), 3-year (0.834 vs 0.783), and 5-year (0.810 vs 0.771) intervals (overall C-index: 0.803, 95% CI 0.747-0.859, vs 0.736, 95% CI 0.673-0.799). External validation confirmed robust generalizability: the Duke cohort showed 1-, 3-, and 5-year AUCs of 0.912, 0.803, and 0.776, respectively, while the SEER cohort maintained consistent performance with AUCs of 0.771, 0.729, and 0.702, respectively. Risk stratification using the RSF identified 25.8% (79/306) high-risk patients and a significantly reduced survival time (P<.001). Notably, the RSF maintained improved net benefits across decision thresholds in decision curve analysis (DCA); similar results were observed in external studies. The RSF model also showed promising performance across different molecular subtypes in all datasets. Based on the RSF predicted scores, patients were stratified into high- and low-risk groups, with notably poorer survival outcomes observed in the high-risk group compared to the low-risk group.
Conclusions: The RSF model, based solely on clinicopathological variables, provides a promising tool for identifying high-risk patients with breast cancer post-NAC. This approach may facilitate personalized treatment strategies and improve patient management in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015342 | PMC |
http://dx.doi.org/10.2196/69864 | DOI Listing |
BMC Cancer
September 2025
Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
Acta Pharmacol Sin
September 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.