Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aging is associated with dysfunction in the cholinergic system, including degeneration of basal forebrain cholinergic terminals that innervate the cortex, which directly contributes to age- and disease-related cognitive decline. In this study, we used [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) imaging to assess the effect of age on cholinergic terminal integrity in predefined regions of interest and its relationship to cognitive performance in healthy older adults who underwent neuropsychological assessment and FEOBV PET brain imaging. Our results showed age-related reductions in FEOBV binding, particularly in the anterior cingulate cortex-the primary region of interest-as well as in the striatum, posterior cingulate cortex, and primary auditory cortex. Notably, FEOBV binding in the anterior cingulate cortex was positively correlated with cognitive performance on the NIH EXAMINER Executive Composite Score. These findings suggest that [18F] FEOBV PET imaging can be used as a reliable biomarker to assess cholinergic changes in the human brain and indicate that preserving the cholinergic integrity of the basal forebrain may help maintain cognitive function and protect against age-related cognitive decline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970925PMC
http://dx.doi.org/10.1016/j.ynirp.2025.100234DOI Listing

Publication Analysis

Top Keywords

anterior cingulate
12
cingulate cortex
12
cognitive performance
12
performance healthy
8
healthy older
8
older adults
8
basal forebrain
8
cognitive decline
8
pet imaging
8
feobv pet
8

Similar Publications

Cortical Thinning and Microstructural Integrity Disruption in White Matter Hyperintensities.

Brain Res Bull

September 2025

Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, 230601, He Fei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230032, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230032, Hefei,

Background: The relationships between white matter microstructure, cortical atrophy, and cognitive function in cerebral small vessel disease (CSVD)-related white matter hyperintensities (WMHs) patients are unclear.

Methods: 71 right-handed WMHs patients (mild, n=23; moderate, n=27; severe, n=21) and 35 healthy controls were included. Tract-based spatial statistics (TBSS) assessed microstructure via fractional anisotropy (FA) and mean diffusivity (MD).

View Article and Find Full Text PDF

The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.

Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.

View Article and Find Full Text PDF

Objective: To assess biological factors associated with anhedonia in depression and amotivation in cannabis use (PROSPERO: CRD42023422438).

Method: A systematic review was conducted of 8 electronic databases. Inclusion criteria included original research studies that investigated the association of biological factors or behavioral tasks with depression combined with concepts of anhedonia or cannabis combined with concepts of amotivation including apathy.

View Article and Find Full Text PDF

Shared Genetic Architecture Among Severe Mental Disorders: A System Biology Approach Based on Protein-Protein Interaction.

Brain Behav

September 2025

Pontificia Universidad Javeriana, Facultad De Ciencias, Departamento de Biología, Biología de Plantas y Sistemas Productivos, Bogotá, Colombia.

Introduction: The study explores shared genetic architecture among major psychiatric disorders-major depressive disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder-emphasizing their overlapping molecular pathways. Using public datasets, we identified shared genes and examined their functional implications through protein-protein interaction (PPI) networks and gene set enrichment analysis (GSEA).

Methods: Genes associated with each disorder were identified through the NCBI Gene database.

View Article and Find Full Text PDF