A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Gel and Rind-Derived Nanoparticles Mitigate Skin Photoaging via Activation of Nrf2/ARE Pathway. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Skin aging is the primary external manifestation of human aging, and long-term exposure to ultraviolet radiation is the leading cause of photoaging, which can lead to actinic keratosis and skin cancer in severe cases. Traditional treatments may pose safety risks and cause side effects. As an emerging research direction, plant-derived exosome-like nanoparticles (PDNPs) show promise in combating aging. , known for its natural active ingredients that benefit the skin, aloe-derived exosome-like nanoparticles (ADNPs) have not yet been studied for their potential in delaying skin aging.

Methods: In this study, nanoparticles were isolated from two different sites, gel and rind (gADNPs and rADNPs), and characterized by TEM, SEM, AFM, NTA and BCA. The effects were evaluated by constructing in vitro and in vivo models and using RT-qPCR, immunofluorescence, and histopathological analysis.

Results: The results first revealed the exceptional anti-aging effects of ADNPs. We found that ADNPs promoted the nuclear translocation of Nrf2, alleviated oxidative stress and DNA damage induced by UV exposure, and inhibited the elevation of β-gal and SASP. In vivo, ADNPs reduced MDA and SOD levels in mouse skin tissue and delayed skin photoaging. Moreover, safety assessments confirmed the excellent biocompatibility of ADNPs.

Conclusion: ADNPs delay skin photoaging through the Nrf2/ARE pathway, holding potential clinical application value, and may provide new therapeutic strategies for future medical cosmetology and skin disease prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972608PMC
http://dx.doi.org/10.2147/IJN.S510352DOI Listing

Publication Analysis

Top Keywords

skin photoaging
12
skin
9
nrf2/are pathway
8
exosome-like nanoparticles
8
adnps
5
gel rind-derived
4
nanoparticles
4
rind-derived nanoparticles
4
nanoparticles mitigate
4
mitigate skin
4

Similar Publications