98%
921
2 minutes
20
Pulse field ablation (PFA) has become a popular technique for treating tens of millions of patients with atrial fibrillation, as it avoids many complications associated with traditional radiofrequency ablation. However, currently, limited studies have used millimeter-scale rigid electrodes modified from radiofrequency ablation to apply electrical pulses of thousands of volts without integrated sensing capabilities. Herein, we combine fractal microelectronics with biomedical catheters for low-voltage PFA, detection of electrode-tissue contact, and interventional electrocardiogram recording. The fractal configuration increases the ratio of the microelectrode insulating edge to area, which facilitates the transfer of current from the microelectrode to the tissue, increasing the ablation depth by 38.6% at 300 V (a 10-fold reduction compared to current technology). ablation experiments on living beagles successfully block electrical conduction, as demonstrated by voltage mapping and electrical pacing. More impressively, this study provides the first evidence that microelectrodes can selectively ablate cardiomyocytes without damaging nerves and blood vessels, greatly improving the safety of PFA. These results are essential for the clinical translation of PFA in the field of cardiac electrophysiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c03477 | DOI Listing |
ACS Sens
April 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
Pulse field ablation (PFA) has become a popular technique for treating tens of millions of patients with atrial fibrillation, as it avoids many complications associated with traditional radiofrequency ablation. However, currently, limited studies have used millimeter-scale rigid electrodes modified from radiofrequency ablation to apply electrical pulses of thousands of volts without integrated sensing capabilities. Herein, we combine fractal microelectronics with biomedical catheters for low-voltage PFA, detection of electrode-tissue contact, and interventional electrocardiogram recording.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
University Larbi Tebessi, Tebessa, Algeria.
This paper introduces a novel class of chaotic attractors by lever- aging different activation functions within neurons possessing multiple dendrites. We propose a comprehensive framework where the activation functions in neurons are varied, allowing for diverse behaviors such as amplification, fluctuation, and folding of scrolls within the resulting chaotic attractors. By employing wavelet functions and other model-specific activation functions, we demonstrate the capability to modify scroll characteristics, including size and direction.
View Article and Find Full Text PDFHeliyon
March 2024
Department of Electrical Engineering, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
This article presents a new design of a compact fractal antenna that operates across various wireless communication applications with wideband functionality. With a peak gain of 6.8 dB and a radiation efficiency ranging from 91% to 94%, the designed antenna operates in the frequency range of 3.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2023
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia.
New composite hydrogels (CH) based on bacterial cellulose (BC) and poly-1-vinyl-1,2,4-triazole (PVT) doped with orthophosphoric acid (oPA), presenting interpenetrating polymeric networks (IPN), have been synthesized. The mesoscopic study of the supramolecular structure (SMS) of both native cellulose, produced by the strain , and the CH based on BC and containing PVT/oPA complex were carried out in a wide range of momentum transfer using ultra- and classical small-angle neutron scattering techniques. The two SMS hierarchical levels were revealed from 1.
View Article and Find Full Text PDFSensors (Basel)
April 2023
Department of Electrical Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates.