Bioactive Scaffolds with Ordered Micro/Nano-Scale Topological Surface for Vascularized Bone Regeneration.

Small

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ordered topological micro/nanostructures of scaffolds play a pivotal role in regulating bone development, remodeling, and regeneration. Nevertheless, achieving the integration of ordered micro/nanostructures into 3D scaffolds remains a formidable challenge. In this context, a brushing-assembly strategy is developed to construct 3D bioactive scaffolds with highly ordered micro/nanostructures. Such an engineered scaffold exhibits a positive regulatory effect on the behavior and fate of bone resident cells, such as mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs), through mechanical stimulation provided by the ordered micro/nanostructures, while also allowing for the precise spatial distribution of multiple cell types through assembly. In vivo experiments demonstrate that scaffolds with ordered nanostructures possess the potential to accelerate vascularized bone regeneration. Overall, this work proposed a universal strategy for the fabrication of bioactive scaffolds with ordered topological micro/nanostructures, bridging the gap between 3D scaffolds and ordered surface microstructures for tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202500975DOI Listing

Publication Analysis

Top Keywords

scaffolds ordered
16
bioactive scaffolds
12
ordered micro/nanostructures
12
ordered
8
vascularized bone
8
bone regeneration
8
ordered topological
8
topological micro/nanostructures
8
micro/nanostructures scaffolds
8
scaffolds
6

Similar Publications

Multimodal bioprinting of pigmented skin with algorithm-tuned control.

Biomater Adv

September 2025

Key Laboratory of Artificial Intelligence & Micro Nano Sensors, Shanxi Province, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, C

This study addresses critical technical challenges in fabricating functional pigmented skin models via 3D bioprinting through the synergistic integration of droplet-based deposition and precision motion control. A hybrid bioprinting strategy was developed to create multilayer biomimetic architectures: the dermal layer was fabricated through extrusion of gelatin methacryloyl-polyacrylamide (GelMA-PAM) composites, while the epidermal layer incorporated precisely patterned melanocyte-laden GelMA-PAM arrays deposited via microvalve technology, subsequently solidified and populated with keratinocytes. To enhance printing reliability, a fractional-order proportional-integral control system optimized through particle swarm optimization (PSO-FOPI) was implemented, significantly improving motor speed regulation and positioning accuracy.

View Article and Find Full Text PDF

Rational optimization of molecular glue degraders (MGD) remains a challenging and lengthy process even after identification of a promising scaffold. Unlike proteolysis targeting chimeras (PROTAC), MGDs rely on induced protein-protein interactions as opposed to direct binding in order to target a protein of interest for degradation. Here, we report the synthesis of MGDs targeting the transcription factor ZBTB11 guided by protein complex modeling.

View Article and Find Full Text PDF

Microwave-Assisted One-Pot Synthesis of Isothiouronium Salts: Experimental and DFT Insights into Silica-Promoted Cyclization toward Thiazolidinium and Thiazole Frameworks.

J Org Chem

September 2025

Departamento de Química Orgánica e Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real, Cádiz 11510, Spain.

Isothiouronium and thiazolidinium salts are sulfur-containing scaffolds commonly found in bioactive molecules. We report an expeditive one-pot, two-step procedure for the rapid synthesis of isothiouronium salts from carbon disulfide under microwave irradiation, allowing their isolation in less than 30 min and in good to excellent yields, without the need for a catalyst. When propargyl bromide is used as an alkylating agent, the corresponding isothiouronium salt undergoes an intramolecular cyclization during silica gel chromatography, affording a thiazolidinium salt.

View Article and Find Full Text PDF

Unlabelled: , the greater Bermuda land snail, is a critically endangered species and one of only two extant members in its genus. These snails are one of Bermuda's few endemic animal clades and their rich fossil record was the basis for the punctuated equilibria model of speciation. Once thought extinct, recent conservation efforts have focused on the recovery of the species, yet no genomic information or other molecular sequences have been available to inform these initiatives.

View Article and Find Full Text PDF

This study employs a suite of quantum chemical methods to systematically investigate the photoisomerization mechanism and antioxidant activity of resveratrol (Res) and two key derivatives, Azo-Resveratrol (AzoRes) and Dihydro-Resveratrol (dhRes), thereby elucidating the impact of molecular scaffold modification on their structure-activity relationships. Employing density functional theory (DFT), time-dependent DFT (TD-DFT), spin-flip TD-DFT and multistate complete active space second-order perturbation theory (MS-CASPT2), we investigated the geometric configurations, absorption spectra, photoisomerization pathways, and key antioxidant parameters for all three molecules. The results reveal that the substitution of the CC bond with an NN linkage (AzoRes) induces a bathochromic shift in the absorption spectrum, introduces a low-energy n → π* transition, and facilitates a barrierless photoisomerization pathway.

View Article and Find Full Text PDF