98%
921
2 minutes
20
Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as an important public health concern that poses a significant threat to human health and imposes a substantial economic burden. Research has demonstrated that ubiquitin ligase-mediated substrate protein ubiquitination is a pivotal factor influencing liver lipid homeostasis and metabolic abnormalities in MAFLD. Nevertheless, the specific enzyme molecules implicated in this regulatory process remain to be elucidated. We have published a transcriptome-overexpressing ubiquitin ligase, membrane-associated ring-CH-type finger 2 (MARCH2), in HepG2 cells, and subsequent reanalysis of these transcriptome data revealed a close association between MARCH2 and lipid metabolism.
Methods: By employing a range of methodologies, including recombinant adeno-associated virus (rAAV) transduction, lentiviral transduction, immunoblotting, quantitative PCR, tissue section staining, ubiquitination assays, serum biochemical analysis, immunoprecipitation, and mass spectrometry, this study investigated the functions and mechanisms of MARCH2 in the progression of MAFLD at the molecular, cellular, and organismal levels.
Results: Overexpression of MARCH2, but not its catalytically inactive ligase variant, inhibited lipid accumulation in HepG2 cells. Additionally, MARCH2 undergoes K48-linked self-polyubiquitination and subsequent proteasomal degradation in response to oleic acid/palmitic acid stimulation. Furthermore, knockout of MARCH2 exacerbates the progression of MAFLD-related phenotypes, including increased body weight, impaired glucose tolerance, reduced insulin sensitivity, hypercholesterolemia, hepatic lipid accumulation, and steatosis, in high-fat diet-fed mice, irrespective of sex. Mechanistically, MARCH2 facilitates the polyubiquitination and degradation of fatty acid synthase (FASN) in the de novo lipogenesis pathway. And liver-specific overexpression of MARCH2 by rAAV effectively reduces FASN levels and further ameliorates MAFLD in ob/ob mice.
Conclusions: MARCH2 undergoes self-ubiquitination and plays an important role in maintaining the liver lipid homeostasis of MAFLD, and drug intervention in the MARCH2-FASN axis is a promising approach for treating systemic metabolic abnormalities in MAFLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142635 | PMC |
http://dx.doi.org/10.1016/j.molmet.2025.102137 | DOI Listing |
Cell Mol Immunol
September 2025
Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Hubei Provincial Research Center for Basic Biological Sciences; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071,
T-cell immunoglobulin mucin family member-1 (TIM-1, also known as HAVCR1/KIM-1) is a transmembrane glycoprotein that has been reported to act as an entry receptor for multiple flaviviruses including Zika virus (ZIKV). The post-translational regulation of TIM-1 and its effects on ZIKV infection are unclear. In this study, we identified the membrane-associated RING-CH-type finger (MARCH) E3 ubiquitin ligase family members MARCH2 and MARCH3 as critical negative regulators of TIM-1 under physiological conditions.
View Article and Find Full Text PDFCell Commun Signal
May 2025
Laboratory of Microbiology, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
Background: Regulation of the nuclear factor-kappa B (NF-kB) signaling pathway is a major host homeostatic mechanism for controlling hyper-inflammation or chronic inflammation. Despite extensive research, the regulatory factors of NF-kB signaling required to preserve homeostasis and control inflammatory disorders are not fully understood. Moreover, the role of MARCH2 in chronic inflammation models and the regulation of MARCH2 activation remain to be elucidated.
View Article and Find Full Text PDFFront Digit Health
April 2025
Aktiia SA, Neuchâtel, Switzerland.
Introduction: Photoplethysmography (PPG) sensors, capturing optical signals from arterial pulses, are debated for their potential in blood pressure (BP) measurement. This study employed the largest dataset to date of paired PPG and cuff BP readings to explore PPG signals for BP estimation.
Methods: 32,152 European residents (age 55.
Mol Metab
June 2025
The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Beijing Hospital, National Center of Gerontology, Institu
Objective: Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as an important public health concern that poses a significant threat to human health and imposes a substantial economic burden. Research has demonstrated that ubiquitin ligase-mediated substrate protein ubiquitination is a pivotal factor influencing liver lipid homeostasis and metabolic abnormalities in MAFLD. Nevertheless, the specific enzyme molecules implicated in this regulatory process remain to be elucidated.
View Article and Find Full Text PDFCirc Res
April 2025
Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (Y.E.L., S.L., Litao Wang, Y.D., L. Wu, H.C., T.Z., J.L., S.X., L.L., J.G., J.R., Y.Z.), Zhongshan Hospital, Fudan University, China.
Background: Aortic aneurysm/dissection (AAD) is a life-threatening disease lacking effective pharmacological treatment. Protein ubiquitination plays a pivotal role in cardiovascular diseases. However, the possible contribution of the E3 ubiquitin ligase March2 (membrane-associated RING [really interesting new gene] finger protein 2) to the cause of AAD remains elusive.
View Article and Find Full Text PDF