98%
921
2 minutes
20
Proteins exhibit remarkable molecular recognition by dynamically adjusting their conformations to selectively interact with ligands at specialized binding sites. To bind hydrated ligands, proteins leverage amino acid residues with similar water affinities as the substrate, minimizing the energy required to strip water molecules from the hydrophilic substrates. In synthetic receptor design, replicating this sophisticated adaptability remains a challenge, as most artificial receptors are optimized to bind desolvated substances. Here, we show that proline-based synthetic receptors can mimic the conformational dynamics of proteins to achieve selective binding of hydrophilic and amphiphilic fluoride substances in aqueous environments. This finding highlights the critical role of receptor flexibility and strategic hydrophilicity in enhancing ligand recognition and affinity in water. Moreover, it establishes a new framework for designing versatile synthetic receptors with tunable hydrophobicity and hydrophilicity profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971368 | PMC |
http://dx.doi.org/10.1038/s41467-025-58589-6 | DOI Listing |
Adv Pharm Bull
July 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
Nanotechnology has revolutionized drug delivery, which offers innovative ways to maximize treatment efficacy while decreasing side effects. The lyotropic liquid crystalline nanoparticles (LLCNP), such as cubosomes and hexosomes, have gained substantial interest because of their distinctive molecular arrangements. Lipophilic, hydrophilic, and amphiphilic drugs can be encapsulated by cubosomes, making them versatile carriers in drug delivery systems.
View Article and Find Full Text PDFACS Omega
September 2025
Experimental Physics, Center for Biophysics, Saarland University, Saarbrücken 66123, Germany.
() is one of the bacterial species capable of forming multilayered biofilms on implants. Such biofilms formed on implanted medical devices often require the removal of the implant in order to avoid sepsis or, in the worst case, even the death of the patient. To address the problem of unwanted biofilm formation, its first step, i.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine. Electronic address:
Phospholipid-derived nanocarriers represent a versatile and chemically customizable class of drug delivery systems that self-assemble into bilayered vesicles due to their intrinsic amphiphilicity. These systems can encapsulate both hydrophilic and hydrophobic drugs through non-covalent interactions and manipulation of lipid phase behavior. This review examines the molecular and supramolecular principles underlying the formation, stability, and functional performance of key phospholipid-based nanocarriers-including liposomes, transferosomes, ethosomes, invasomes, phytosomes, pharmacosomes, and virosomes.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhna - Magdalla Road, Surat-395007, Gujarat, India.
This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').
View Article and Find Full Text PDFChempluschem
September 2025
Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
Enhancing singlet oxygen generation for photosensitizers in aqueous media can markedly improve the efficacy of photochemical therapy. Herein, triblock polymers composed of pyropheophorbide a photosensitizer (PPa), polyethylene glycol, and phospholipid are synthesized. These triblock polymers, driven by hydrophilic-hydrophobic interactions, spontaneously fold into an amphiphilic structure and further self-assemble into nanomicelles.
View Article and Find Full Text PDF