Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid development of the natural gas hydrate industry has put forward higher requirements for hydrate promotion technology. The exploration of methods that can simultaneously enhance both the hydrate formation rate and the final gas and water conversion efficiency has become a critical research focus. This study systematically investigated the synergistic effects of electric field (EF) signals, including three distinct waveforms (square, sine, ramp wave) at six different voltage levels, combined with four concentration gradients of the cationic surfactant called hexadecyl trimethylammonium bromide (CTAB) on the CH hydrate formation process. Experimental results demonstrated that the application of external EF significantly enhanced the gas storage capacity of hydrate, with different waveforms exhibiting varying degrees of promotional effects. Notably, square wave and ramp wave, which allow for instantaneous changes in the EF direction, exhibited superior performance in improving hydrate formation rates and gas and water conversion efficiency and enhancing hydrate fluidity. Furthermore, a kinetic model for hydrate formation was developed, which showed excellent agreement with the observed results. These findings not only advance the theoretical framework of EF-assisted hydrate formation but also provide valuable insights and practical guidance for the development of natural gas hydrate technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5c00510DOI Listing

Publication Analysis

Top Keywords

hydrate formation
20
gas hydrate
12
hydrate
11
electric field
8
development natural
8
natural gas
8
gas water
8
water conversion
8
conversion efficiency
8
ramp wave
8

Similar Publications

Glycerol and glycerol-3-phosphate: multifaceted metabolites in metabolism, cancer and other diseases.

Endocr Rev

September 2025

Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.

Glycerol and glycerol-3-phosphate are key metabolites at the intersection of carbohydrate, lipid and energy metabolism. Their production and usage are organismal and cell type specific. Glycerol has unique physicochemical properties enabling it to function as an osmolyte, protein structure stabilizer, antimicrobial and antifreeze agent, important to preservation of many biological functions.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Impact of wettability heterogeneity on methane hydrate growth kinetics in partially water-saturated sediments.

J Colloid Interface Sci

August 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),

Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF