98%
921
2 minutes
20
Borophene, an anisotropic Dirac Xene, exhibits diverse crystallographic phases, including metallic β₁₂, χ₃, and semiconducting α phases, alongside exceptional properties such as high electronic mobility, superior Young's modulus, thermal conductivity, superconductivity, and ferroelasticity. These attributes position borophene as a promising material for energy storage, electrocatalysis, and wearable electronics. However, its widespread application is hindered by existing synthesis methods that are expensive, complex, and yield-limited. This study presents a novel, cost-effective, environmentally friendly cryo-exfoliation method for borophene synthesis. Crystalline boron powder is rapidly quenched in liquid nitrogen and subjected to mild sonication, producing borophene with lateral dimensions of ≈50 to 10 µm and few-layer thicknesses. Advanced characterizations, including Atomic Force Microscopy (AFM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS), confirm structural integrity, chemical purity, and minimal surface oxidation. Molecular dynamics simulations further elucidate the weakened inter-layer coupling induced by cryo-processing. The integration of borophene into Polyvinylidene Fluoride (PVDF) nanocomposites demonstrates its potential for wearable electronics, achieving motion-sensitive devices with outstanding performance, generating output voltages up to ≈40 V. This scalable cryo-exfoliation approach paves the way for borophene-based applications in energy harvesting, sensing, and next-generation electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245121 | PMC |
http://dx.doi.org/10.1002/advs.202502257 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
Wearable bioelectronics have advanced dramatically over the past decade, yet remain constrained by their superficial placement on the skin, which renders them vulnerable to environmental fluctuations and mechanical instability. Existing microneedle (MN) electrodes offer minimally invasive access to dermal tissue, but their rigid, bulky design-often 100 times larger and 10,000 times stiffer than dermal fibroblasts-induces pain, tissue damage, and chronic inflammation, limiting their long-term applicability. Here, a cell-stress-free percutaneous bioelectrode is presented, comprising an ultrathin (<2 µm), soft MN (sMN) that dynamically softens via an effervescent structural transformation after insertion.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510641, China.
Recently, flexible airflow sensors have attracted significant attention due to their impressive characteristics and capabilities for airflow sensing. However, the development of high-performance flexible airflow sensors capable of sensing airflow over large areas remains a challenge. In this work, it is proposed that a hair-like flexible airflow sensor, based on laser direct writing and electrostatic flocking, offers an efficient technology for airflow sensing.
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDF