Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbes respond to changes in their environment by adapting their physiology through coordinated adjustments to the expression levels of functionally related genes. To detect these shifts in situ, we developed a sparse tensor decomposition method that derives gene co-expression patterns from inherently complex whole community RNA sequencing data. Application of the method to metatranscriptomes of the abundant marine cyanobacteria and identified responses to scarcity of two essential nutrients, nitrogen and iron, including increased transporter expression, restructured photosynthesis and carbon metabolism, and mitigation of oxidative stress. Further, expression profiles of the identified gene clusters suggest that both cyanobacteria populations experience simultaneous nitrogen and iron stresses in a transition zone between North Pacific oceanic gyres. The results demonstrate the power of our approach to infer organism responses to environmental pressures, hypothesize functions of uncharacterized genes, and extrapolate ramifications for biogeochemical cycles in a changing ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970481PMC
http://dx.doi.org/10.1126/sciadv.adr4310DOI Listing

Publication Analysis

Top Keywords

nitrogen iron
12
sparse tensor
8
tensor decomposition
8
simultaneous acclimation
4
acclimation nitrogen
4
iron scarcity
4
scarcity open
4
open ocean
4
ocean cyanobacteria
4
cyanobacteria revealed
4

Similar Publications

Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.

Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.

View Article and Find Full Text PDF

Unlocking low NO emissions from nitrate-laden wastewater in constructed wetlands: critical role of pyrrhotite substrate layer in mediating nitrate-dependent sulfide oxidation.

Bioresour Technol

September 2025

Research Division for Water Environmental Science and Engineering, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:

Constructed wetlands (CWs) treating nitrate-rich wastewater often face incomplete denitrification and elevated NO emissions due to insufficient electron donors. Pyrrhotite as a CW substrate demonstrated potential for enhancing autotrophic denitrification through coupled sulfur and iron biological oxidation. However, the impact of pyrrhotite layer positioning on regulating NO emissions and underlying mechanisms remains unclear.

View Article and Find Full Text PDF

The application of manure and straw is beneficial for improving the content and stability of DOM in paddy soil.

J Environ Manage

September 2025

College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China. Electronic address:

While organic manure application effectively increases soil organic carbon (SOC) content, it may elevate greenhouse gas emissions. Crop straw, a widely available agricultural residue, enhances SOC through gradual decomposition. The effect of organic manure combined with crop straw on the organic carbon components of paddy soil is still unclear.

View Article and Find Full Text PDF

Metagenomic and Micro-CT insights into Fe(III)-modulated extracellular polymeric substances driving anammox granulation and enhancement of nitrogen removal.

J Environ Manage

September 2025

State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China. Electronic address:

Multivalent cations are commonly employed to accelerate sludge aggregation and granulation, yet they often compromise intragranular mass transfer and diminish microbial activity. Here, the effect of Fe(III) dosing on granule formation and anammox-driven nitrogen removal over a 110-day continuous operation was investigated. Fe(III) supplementation enhanced interactions with extracellular polymeric substances (EPS), transforming flocculent biomass into highly porous granules and yielding a 67.

View Article and Find Full Text PDF

Plants being rooted entities, are highly susceptible to diverse abiotic stresses that impair their growth and development. To encounter these adverse conditions, plants have developed several morpho-physiological and biochemical strategies. In particular, nutrients such as nitrogen, phosphorous, potassium, sulfur and iron-play an important role in enhancing stress resilience by promoting growth and regulating key signaling pathways.

View Article and Find Full Text PDF