Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although blue light has been known to negatively affect skin cells, its detailed signaling mechanisms and anti-blue light agents have not been clearly elucidated. We investigated the involvement of Yes-associated protein (YAP)-mediated Hippo signaling in blue light-induced apoptosis, depending on the degree of blue light exposure. Additionally, we elucidated the effects of melatonin on blue light-irradiated keratinocytes and examined their action mechanisms. After blue light irradiation, its effects and antagonizing effects of melatonin on cell proliferation, apoptosis, DNA damage, and transient receptor potential vanilloid 1 (TRPV1)/YAP-mediated signaling were examined in HaCaT cells using western blots, image analysis, flow cytometric analysis, co-immunoprecipitation, and immunocytochemistry. We found that melatonin treatment attenuated the reduced cell viability and increased production of reactive oxygen species (ROS) in response to blue light irradiation. In the experiments to investigate the mechanism of action of blue light and melatonin, we found that YAP changed its binding protein, either p73 or TEAD, depending on the degree of blue light exposure. Melatonin treatment reduced blue light-induced phosphorylation of TRPV1 and MST1/2. Upon treatment with capsazepine, an antagonist of TRPV1, MST1/2 activation also reduced. Furthermore, we found that prolonged blue light irradiation induced DNA damage, which in turn induced YAP-p73 nuclear translocation. These effects were also notably attenuated by melatonin. These findings indicate that depending on the duration of blue light irradiation, two different YAP-mediated Hippo signaling pathways are activated. Additionally, these findings suggest that melatonin could be a potential therapeutic agent for blue light-induced skin damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970215PMC
http://dx.doi.org/10.1002/biof.70015DOI Listing

Publication Analysis

Top Keywords

blue light
32
blue light-induced
16
light irradiation
16
blue
13
light
9
melatonin blue
8
yap-mediated hippo
8
hippo signaling
8
depending degree
8
degree blue
8

Similar Publications

Photocatalytic cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes to access 3-(2,2,2-trifluoroethyl)-3-indoles.

Chem Commun (Camb)

September 2025

College of Chemistry, Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450052, P. R. China.

A visible-light-catalyzed three-component cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes is developed to build a series of 3-(2,2,2-trifluoroethyl)-3-indoles. This protocol features mild reaction conditions using an 18 W blue LED as the light source at room temperature. The desired 3-indole products can be successfully transformed into valuable tetrahydroindole scaffolds through either reduction or cross-coupling reactions.

View Article and Find Full Text PDF

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.

View Article and Find Full Text PDF

High Current Gain Endowed by Heterojunction Engineering Coupling Interfacial Molecular Modulation: A Low-Ascorbic Acid-Dependent Organic Photoelectrochemical Transistor Aptasensing Platform.

Anal Chem

September 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.

To balance the "detection sensitivity" and "device stability" of the organic photoelectrochemical transistor (OPECT) aptasensors, it has become an urgent challenge for achieving effective signal modulation under low ascorbic acid (AA) conditions. To address this, our work proposed a collaborative optimization strategy by coupling heterojunction engineering with interfacial molecular modulation, to endow a high current gain of OPECT with low-AA -dependence. First, a CdZnS-SnInS heterojunction gate was constructed by in situ growth of CdZnS quantum dots (QDs) on SnInS nanoflowers, which enhanced the light trapping ability and photoelectric conversion efficiency of the photoactive gate.

View Article and Find Full Text PDF

Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.

Methods: A virtual driving simulator was utilized to carry out the experiment.

View Article and Find Full Text PDF