98%
921
2 minutes
20
Background: Variability in motor recovery after stroke represents a major challenge in its understanding and management. While functional MRI has been used to unravel interactions between stroke motor function and clinical outcome, fMRI alone cannot clarify any relation between brain activation and movement characteristics.
Objectives: We aimed to identify fMRI and kinematic coupling approaches and to evaluate their potential contribution to the understanding of motor function post-stroke.
Method: A systematic literature review was performed according to PRISMA guidelines on studies using fMRI and kinematics in post-stroke individuals. We assessed the internal, external, statistical, and technological validity of each study. Data extraction included study design and analysis procedures used to couple brain activity with movement characteristics.
Results: Of the 404 studies found, 23 were included in the final review. The overall study quality was moderate (0.6/1). Thirteen studies used kinematic information either parallel to the fMRI results, or as a real-time input to external devices, for instance to provide feedback to the patient. Ten studies performed a statistical analysis between movement and brain activity by either using kinematics as variables during group or individual level regression or correlation. This permitted establishing links between movement characteristics and brain activity, unraveling cortico-kinematic relationships. For instance, increased activity in the ipsilesional Premotor Cortex was related to less smooth movements, whereas trunk compensation was expressed by increased activity in the contralesional Primary Motor Cortex.
Conclusion: Our review suggests that the coupling of fMRI and kinematics may provide valuable insight into cortico-kinematic relationships. The optimization and standardization of both data measurement and treatment procedures may help the field to move forward and to fully use the potential of multimodal cortico-kinematic integration to unravel the complexity of post-stroke motor function and recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966795 | PMC |
http://dx.doi.org/10.1186/s12984-025-01611-1 | DOI Listing |
BMC Geriatr
September 2025
Department of Neurobiology, Care Sciences and Society, Division of Nursing, Karolinska Institutet, Stockholm, Sweden.
Background: The benefits of physical activity for frail older acutely hospitalized adults are becoming increasingly clear. To enhance opportunities for physical activity on geriatric wards, it is essential to understand the older adult's perspective.
Aim: The aim of the study was to explore the experiences and perceptions of physical activity among older adults during hospital stays on a geriatric ward.
BMC Neurol
September 2025
Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
Background: Parkinson's disease (PD) is characterized by motor symptoms altering gait domains such as slow walking speed, reduced step and stride length, and increased double support time. Gait disturbances occur in the early, mild to moderate, and advanced stages of the disease in both backward walking (BW) and forward walking (FW), but are more pronounced in BW. At this point, however, no information is available about BW performance and disease stages specified using the Hoehn and Yahr (H&Y) scale.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.
Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.
View Article and Find Full Text PDF