98%
921
2 minutes
20
Adults with opioid use disorder (OUD) are at increased risk for opioid-related complications and repeated hospital admissions. Routine screening for patients at risk for an OUD to prevent complications is not standard practice in many hospitals, leading to missed opportunities for intervention. The adoption of electronic health records (EHRs) and advancements in artificial intelligence (AI) offer a scalable approach to systematically identify at-risk patients for evidence-based care. This pre-post quasi-experimental study evaluated whether an AI-driven OUD screener embedded in the EHR was non-inferior to usual care in identifying patients for addiction medicine consultations, aiming to provide a similarly effective but more scalable alternative to human-led ad hoc consultations. The AI screener used a convolutional neural network to analyze EHR notes in real time, identifying patients at risk and recommending consultations. The primary outcome was the proportion of patients who completed a consultation with an addiction medicine specialist, which included interventions such as outpatient treatment referral, management of complicated withdrawal, medication management for OUD and harm reduction services. The study period consisted of a 16-month pre-intervention phase followed by an 8-month post-intervention phase, during which the AI screener was implemented to support hospital providers in identifying patients for consultation. Consultations did not change between periods (1.35% versus 1.51%, P < 0.001 for non-inferiority). In secondary outcome analysis, the AI screener was associated with a reduction in 30-day readmissions (odds ratio: 0.53, 95% confidence interval: 0.30-0.91, P = 0.02) with an incremental cost of US$6,801 per readmission avoided, demonstrating its potential as a scalable, cost-effective solution for OUD care. ClinicalTrials.gov registration: NCT05745480 .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41591-025-03603-z | DOI Listing |
JMIR Hum Factors
September 2025
KK Women's and Children's Hospital, Singapore, Singapore.
Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.
View Article and Find Full Text PDFCurr Med Res Opin
September 2025
Department of Internal Medicine, Taksim Training and Research Hospital, Istanbul, Turkey.
Introduction: Diabetes Mellitus is a chronic disease characterised by elevated plasma glucose (PG) levels. HbA1c has been widely utilized for diabetes diagnosis. However, certain conditions restrict its use.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2025
Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Roma, Italy.
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.
View Article and Find Full Text PDFClin Orthop Relat Res
September 2025
Leni & Peter W. May Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.
View Article and Find Full Text PDFJAMA Cardiol
September 2025
Department of Medicine, Cardiovascular Medicine, Stanford University, Stanford, California.
Importance: Consumer wearable technologies have wide applications, including some that have US Food and Drug Administration clearance for health-related notifications. While wearable technologies may have premarket testing, validation, and safety evaluation as part of a regulatory authorization process, information on their postmarket use remains limited. The Stanford Center for Digital Health organized 2 pan-stakeholder think tank meetings to develop an organizing concept for empirical research on the postmarket evaluation of consumer-facing wearables.
View Article and Find Full Text PDF