98%
921
2 minutes
20
Background: Antimicrobial resistance (AMR) poses a global health threat, particularly in low- and middle-income countries (LMICs). Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system technology offers a promising tool to combat AMR by targeting and disabling resistance genes in WHO bacterial priority pathogens. Thus, we systematically reviewed the potential of CRISPR-Cas technology to address AMR.
Methods: This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was conducted using the Scopus and PubMed databases, focusing on publications from 2014 to June 2024. Keywords included "CRISPR/Cas," "antimicrobial resistance," and "pathogen." The eligibility criteria required original studies involving CRISPR/Cas systems that targeted AMR. Data were extracted from eligible studies, qualitatively synthesized, and assessed for bias using the Joanna Briggs Institute (JBI)-standardized tool.
Results: Data from 48 eligible studies revealed diverse CRISPR-Cas systems, including CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas3, targeting various AMR genes, such as blaOXA-232, blaNDM, blaCTX-M, ermB, vanA, mecA, fosA3, blaKPC, and mcr-1, which are responsible for carbapenem, cephalosporin, methicillin, macrolide, vancomycin, colistin, and fosfomycin resistance. Some studies have explored the role of CRISPR in virulence gene suppression, including enterotoxin genes, tsst1, and iutA in Staphylococcus aureus and Klebsiella pneumoniae. Delivery mechanisms include bacteriophages, nanoparticles, electro-transformation, and conjugative plasmids, which demonstrate high efficiency in vitro and in vivo. CRISPR-based diagnostic applications have demonstrated high sensitivity and specificity, with detection limits as low as 2.7 × 10 CFU/mL, significantly outperforming conventional methods. Experimental studies have reported significant reductions in resistant bacterial populations and complete suppression of the targeted strains. Engineered phagemid particles and plasmid-curing systems have been shown to eliminate IncF plasmids, cured plasmids carrying vanA, mcr-1, and blaNDM with 94% efficiency, and restore antibiotic susceptibility. Gene re-sensitization strategies have been used to restore fosfomycin susceptibility in E. coli and eliminate blaKPC-2-mediated carbapenem resistance in MDR bacteria. Whole-genome sequencing and bioinformatics tools have provided deeper insights into CRISPR-mediated defense mechanisms. Optimization strategies have significantly enhanced gene-editing efficiencies, offering a promising approach for tackling AMR in high-priority WHO pathogens.
Conclusions: CRISPR-Cas technology has the potential to address AMR across priority WHO pathogens. While promising, challenges in optimizing in vivo delivery, mitigating potential resistance, and navigating ethical-regulatory barriers must be addressed to facilitate clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963374 | PMC |
http://dx.doi.org/10.1186/s41182-025-00728-2 | DOI Listing |
Virology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.
View Article and Find Full Text PDFMed Sci (Paris)
September 2025
CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.
The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan.
T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDF