A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Real-time surveillance system for patient deterioration: a pragmatic cluster-randomized controlled trial. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The COmmunicating Narrative Concerns Entered by RNs (CONCERN) early warning system (EWS) uses real-time nursing surveillance documentation patterns in its machine learning algorithm to identify deterioration risk. We conducted a 1-year, multisite, pragmatic trial with cluster-randomization of 74 clinical units (37 intervention; 37 usual care) across 2 health systems. Eligible adult hospital encounters were included. We tested if outcomes differed between patients whose care teams were and patients whose care teams were not informed by the CONCERN EWS. Coprimary outcomes were in-hospital mortality (examined as instantaneous risk) and length of stay. Secondary outcomes were cardiopulmonary arrest, sepsis, unanticipated intensive care unit transfers and 30-day hospital readmission. Among 60,893 hospital encounters (33,024 intervention; 27,869 usual care), intervention group encounters had 35.6% decreased instantaneous risk of death (adjusted hazard ratio (HR), 0.64; 95% confidence interval (CI), 0.53-0.78; P < 0.0001), 11.2% decreased length of stay (adjusted incidence rate ratio, 0.91; 95% CI, 0.90-0.93; P < 0.0001), 7.5% decreased instantaneous risk of sepsis (adjusted HR, 0.93; 95% CI, 0.86-0.99; P = 0.0317) and 24.9% increased instantaneous risk of unanticipated intensive care unit transfer (adjusted HR, 1.25; 95% CI, 1.09-1.43; P = 0.0011) compared with usual-care group encounters. No adverse events were reported. A machine learning-based EWS, modeled on nursing surveillance patterns, decreased inpatient deterioration risk with statistical significance. ClinicalTrials.gov registration: NCT03911687 .

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-025-03609-7DOI Listing

Publication Analysis

Top Keywords

usual care
8
hospital encounters
8
patients care
8
care teams
8
instantaneous risk
8
care
5
real-time surveillance
4
surveillance system
4
system patient
4
patient deterioration
4

Similar Publications