MIO: An ontology for annotating and integrating medical knowledge in myocardial infarction to enhance clinical decision making.

Comput Biol Med

Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As biotechnology and computer science continue to advance, there's a growing amount of biomedical data worldwide. However, standardizing and consolidating these data remains challenging, making analysis and comprehension more difficult. To enhance research on complex diseases like myocardial infarction (MI), an ontology is necessary to ensure consistent data labeling and knowledge representation. This will facilitate data management and the application of artificial intelligence techniques in this field, ultimately advancing precision medicine research for MI. This study introduced the MI Ontology (MIO), which was developed using Stanford's seven-step method and Protégé. MIO aims to support precision medicine research on MI by effectively modeling and representing MI-related concepts and relationships. The validation of the MIO model involved employing Ontology Web Language (OWL) reasoners and comparing it with other disease-specific ontologies. MIO is an ontology model comprising of 3090 classes, 14 object attributes, 3494 individuals, 9415 synonyms and 49263 axioms, which encompass knowledge related to MI such as anatomical entities, clinical findings, drugs, genes, influencing factors, pathogenesis, patients-related concepts, procedures, and disease types. Furthermore, MIO has passed logical consistency validation and exhibits a broader conceptual scope and deeper knowledge structure than other disease-specific ontologies. Additionally, clinical use scenarios for MIO were developed to help address specific clinical problems. This study constructed the first comprehensive disease-specific ontology in cardiovascular diseases, named MIO, to promote precision medicine research on MI. MIO integrates and standardizes medical data, addressing complexity and standardization challenges. This promotes the use of big data analysis, explainable AI, and deep phenotype research in precision medicine. Future efforts will focus on enhancing and expanding MIO's applicability and scalability for superior services in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2025.110107DOI Listing

Publication Analysis

Top Keywords

precision medicine
16
mio
9
mio ontology
8
myocardial infarction
8
mio developed
8
disease-specific ontologies
8
data
6
ontology
5
ontology annotating
4
annotating integrating
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

Purpose: CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy. Greater understanding of the smallest meaningful improvements for individuals with CDD in clinical trials and practice is needed for a person-centred approach to treatment efficacy. This study explored how parent/caregivers of people with CDD understood meaningful improvements and described change for priority functional domains including communication, gross motor, fine motor, feeding.

View Article and Find Full Text PDF