98%
921
2 minutes
20
Understanding of the specific processes involved in the development of brain microarchitecture and how these are altered by genetic, cognitive, or environmental factors is a key to more effective and efficient interventions. With the increasing number of publicly available neuroimaging databases, there is an opportunity to combine large-scale imaging studies to increase the power of statistical analyses to test common biological hypotheses. However, cross-study, cross-sectional analyses are confounded by inter-scanner variability that can cause both spatially and anatomically dependent signal aberrations. In particular, scanner-related differences in the diffusion-weighted magnetic resonance imaging (DW-MRI) signal are substantially different in tissue types like cortical/subcortical gray matter and white matter. Recent studies have shown effective harmonization using the ComBat technique (adopted from genomics) to address inter-site variability in white matter using diffusion tensor imaging (DTI) microstructure indices like fractional anisotropy (FA) or mean diffusivity (MD). In this study, we propose (1) to apply the correction at voxel level using tract-based spatial statistics (TBSS) in FA, (2) to correct variability across scanners with different gradient strengths in DTI, and (3) to apply the ComBat technique to advanced DW-MRI models, i.e., neurite orientation dispersion and density imaging (NODDI), to correct for variability of orientation dispersion index (ODI) in gray matter using gray matter-based spatial statistics tool (GSBSS). We show that the biological variability with age is retained or improved while correcting for variability across scanners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959572 | PMC |
http://dx.doi.org/10.1007/978-3-030-04061-1_3 | DOI Listing |
Phys Rev Lett
August 2025
University of Tokyo, Center for Nuclear Study, Wako, Saitama 351-0198, Japan.
The 247-keV state in ^{54}Sc, populated in the β decay of ^{54}Ca, is reported here as a nanosecond isomer with a half-life of 26.0(22) ns. The state is interpreted as the 1^{+} member of the πf_{7/2}⊗νf_{5/2} spin-coupled multiplet, which decays to the 3^{+},πf_{7/2}⊗νp_{1/2} ground state.
View Article and Find Full Text PDFCharged hadron elliptic anisotropies (v_{2}) are presented over a wide transverse momentum (p_{T}) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively.
View Article and Find Full Text PDFAnn Acad Med Singap
August 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore.
Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.
Behav Brain Res
September 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China. Electronic address:
Postpartum Depression (PPD) is a significant perinatal mood disorder affecting many new mothers in the first postpartum year. It is characterized by emotional, cognitive, and behavioral changes, often leading to delayed diagnosis due to nonspecific symptoms. PPD arises from a complex interplay of neuroendocrine, genetic, and psychosocial factors.
View Article and Find Full Text PDF