98%
921
2 minutes
20
Semi-supervised learning methods, compared to fully supervised learning, offer significant potential to alleviate the burden of manual annotations on clinicians. By leveraging unlabeled data, these methods can aid in the development of medical image segmentation systems for improving efficiency. Boundary segmentation is crucial in medical image analysis. However, accurate segmentation of boundary regions is under-explored in existing methods since boundary pixels constitute only a small fraction of the overall image, resulting in suboptimal segmentation performance for boundary regions. In this paper, we introduce boundary-guided contrastive learning for semi-supervised medical image segmentation (BoCLIS). Specifically, we first propose conservative-to-radical teacher networks with an uncertainty-weighted aggregation strategy to generate higher quality pseudo-labels, enabling more efficient utilization of unlabeled data. To further improve the performance of segmentation in boundary regions, we propose a boundary-guided patch sampling strategy to guide the framework in learning discriminative representations for these regions. Lastly, the patch-based contrastive learning is proposed to simultaneously compute the (dis)similarities of the discriminative representations across intra- and inter-images. Extensive experiments on three public datasets show that our method consistently outperforms existing methods, especially in the boundary region, with DSC improvements of 20.47%, 16.75%, and 17.18%, respectively. A comprehensive analysis is further performed to demonstrate the effectiveness of our approach. Our code is released publicly at https://github.com/youngyzzZ/BoCLIS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2025.3556482 | DOI Listing |
Cereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
School of Medicine and Public Health, University of Wisconsin-Madison, Madison.
Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.
Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.
Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.
Int J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDF