98%
921
2 minutes
20
Unlabelled: The order consists of over 300 species of segmented, negative-strand RNA viruses. These viruses have a tri-segmented genome (S, M, and L segments) that encodes the nucleocapsid protein (N protein), glycoprotein precursor, and RNA-dependent RNA polymerase (RdRp), respectively. The RdRp is a large protein (~420 kDa) responsible for synthesizing viral mRNA and replicating the viral genome. Bunyaviruses initiate transcription of viral mRNA through a unique cap-snatching mechanism. During this process, the N-terminal endonuclease domain of the RdRp cleaves host cell mRNA at the 5' terminus and uses the resulting capped mRNA fragment as a primer. This endonuclease domain exhibits a highly conserved structural architecture and is essential for establishing viral infection in host cells. Therefore, the N-terminal endonuclease domain represents a promising target for therapeutic intervention against Bunyaviruses, particularly at the early stages of the virus replication cycle. In this study, we developed a highly sensitive fluorescence resonance energy transfer-based assay to quantitatively examine the activity of the bacterially expressed and purified endonuclease domain of hantavirus RdRp. A 20-nucleotide synthetic RNA, labeled with a 6-FAM fluorophore at the 5' end and an Iowa Black quencher at the 3' end, generated a significant dequenched fluorescence signal upon cleavage by the purified endonuclease domain. Kinetic analysis revealed a half-life () of approximately 3 min for the reaction, achieving a signal-to-background ratio of approximately 31.
Importance: Viruses belonging to the order , including Hantaviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, Severe Fever with Thrombocytopenia Syndrome Virus, and La Crosse encephalitis virus, cause severe human illnesses with mortality rates in certain outbreaks reaching 50%, 10%-40%, 10%-20%, 6%-30%, and 1%, respectively. Currently, there are no Food and Drug Administration-approved vaccines or antiviral therapeutics available for these viruses. The highly efficient and cost-effective fluorescence resonance energy transfer-based endonuclease assay, having a quantitative fluorescence readout, can be optimized for high-throughput screening of chemical libraries to identify chemical inhibitors for the Bunyavirus cap-snatching endonuclease. The assay will be of critical importance for antiviral drug discovery against numerous negative-strand RNA viruses using cap-snatching mechanism for transcription initiation and replication of the RNA genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054126 | PMC |
http://dx.doi.org/10.1128/spectrum.03289-24 | DOI Listing |
Circular Rep-encoding single-stranded DNA (CRESS-DNA) virus Rep proteins are multidomain enzymes that mediate viral DNA rolling-circle replication. Reps nick viral DNA to expose a 3' end for polymerase extension, provide an NTP-dependent helicase activity for DNA unwinding, and join nicked ends to form circular viral genomes. Here, we present the first structures of a Rep protein from the family, a newly discovered family of human-associated CRESS-DNA viruses that replicates within the oral protozoan .
View Article and Find Full Text PDFCommun Biol
September 2025
UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of maternally-inherited UBE3A. In neurons, paternally-inherited UBE3A is silenced in cis by a long non-coding RNA called Ube3a-ATS. Here, we found that Neisseria meningitidis Cas9 with two mutations (D15A and H587A) in the nuclease domains (dNmCas9) can unsilence the dormant paternal Ube3a allele in mouse and human neurons when targeted to Snord115 snoRNA genes located in introns of Ube3a-ATS.
View Article and Find Full Text PDFCell Discov
September 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
In the evolutionary arms race between bacteria and viruses, retrons have emerged as distinctive antiphage defense systems. Here, we elucidate the structure and function of Retron-Eco2, which comprises a non-coding RNA (ncRNA) that encodes multicopy single-stranded DNA (msDNA, a DNA‒RNA hybrid) and a fusion protein containing a reverse transcriptase (RT) domain and a topoisomerase-primase-like (Toprim) effector domain. The Eco2 msDNA and RT-Toprim fusion protein form a 1:1 stoichiometric nucleoprotein complex that further assembles into a trimer (msDNA:RT-Toprim ratio of 3:3) with a distinctive triangular configuration.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Department of Natural Science, Division of Science and Technology, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan.
Maturation of transfer RNA molecules often requires removal of intronic sequences by endonucleases that recognize diverse RNA secondary structures. Archaeal splicing endonucleases [versatile RNA-splicing endonucleases (VSENs)] exhibit remarkable substrate versatility, yet the structural basis for this broad specificity has remained unclear. Here, we report the 1.
View Article and Find Full Text PDFSci Transl Med
August 2025
Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Resident tissue macrophages and monocytes (RTMs) integrate local and systemic signals to coordinate immune cell function at homeostasis and in response to inflammatory stimuli. Obesity-associated metabolic dysfunction drives the development of RTM populations that contribute to disease states in multiple tissues. However, the contribution of specific dietary components to innate immune cell activation and function, as opposed to the direct effects of obesity, is largely unknown.
View Article and Find Full Text PDF