Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obstructive sleep apnea (OSA) is the most common sleep apnea-related disorder, with a high prevalence and a range of associated complications. Ferroptosis is a new mode of cell death that is involved in the development of OSA, but the mechanism has remained elusive. In the present study, ferroptosis-related genes in OSA were assessed and their potential clinical value was discussed. Data were downloaded and merged, and screened for differentially expressed genes (DEGs) through the Gene Expression Omnibus database. The OSA ferroptosis-related genes were obtained after intersecting with the downloaded ferroptosis-related genes. Subsequently, key ferroptosis-associated differential genes were obtained using two machine learning methods (the least absolute shrinkage and selection operators and random forest). The immune infiltration in the samples and the correlation between key differential genes and immune infiltrating cells were then analyzed. A competing endogenous (ce)RNA visualization network was constructed to find possible therapeutic targets. Finally, the expression levels of key DEGs were verified by reverse transcription-quantitative (RT-q)PCR. In this study, 3 key ferroptosis-related differential genes were identified: TXN, EGR1 and CDKN1A. Functional enrichment analysis showed that the three key differential genes in OSA can influence the development of OSA by affecting metabolism, immune response and other processes. RT-qPCR experiments verified the expression of these key genes, further confirming the findings. A persistent state of immune activation may promote the progression of OSA, with marked infiltration of T cells and natural killer cells in OSA tissues. Genipin is a possible targeted therapeutic agent for OSA. Meanwhile, ceRNA network analysis identified several long non-coding RNAs that can regulate OSA disease progression. A total of 3 key ferroptosis-related markers were identified (TXN, EGR1 and CDKN1A) that are closely associated with metabolic disorders and immune responses, and which may be targets for early diagnosis and treatment of OSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947867PMC
http://dx.doi.org/10.3892/etm.2025.12845DOI Listing

Publication Analysis

Top Keywords

differential genes
16
ferroptosis-related genes
12
osa
11
genes
9
machine learning
8
obstructive sleep
8
sleep apnea
8
development osa
8
genes osa
8
key differential
8

Similar Publications

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.

Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.

View Article and Find Full Text PDF

Background: We conducted a transcriptomic analysis to examine cerebellar transcriptional changes in a mouse model of chronic intermittent alcohol exposure.

Methods: We established a mouse model of chronic intermittent alcohol exposure and conducted a cerebellar transcriptomic analysis. After identifying differentially expressed genes, we analyzed pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology.

View Article and Find Full Text PDF

Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).

View Article and Find Full Text PDF