98%
921
2 minutes
20
The emergence of immunotherapy has led to the clinical approval of several related drugs. However, their efficacy against solid tumors remains limited. As the hub of immune activation, lymph nodes (LNs) play a critical role in tumor immunotherapy by initiating and amplifying immune responses. Nevertheless, the intricate physiological structure and barriers within LNs, combined with the immunosuppressive microenvironment induced by tumor cells, significantly impede the therapeutic efficacy of immunotherapy. Engineered nanoparticles (NPs) have shown great potential in overcoming these challenges by facilitating targeted drug transport to LNs and directly or indirectly activating T cells. This review systematically examines the structural features of LNs, key factors influencing the targeting efficiency of NPs, and current strategies for remodeling the immunosuppressive microenvironment of LNs. Additionally, it discusses future opportunities for optimizing NPs to enhance tumor immunotherapy, addressing challenges in clinical translation and safety evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203997 | PMC |
http://dx.doi.org/10.1042/EBC20253008 | DOI Listing |
Best Pract Res Clin Haematol
September 2025
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.
Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China. Electronic address:
Multiple myeloma (MM) is a malignant disease in which clonal plasma cells proliferate abnormally. In patients with MM, the number and function of NK cells are suppressed, resulting in reduced immune surveillance and clearance of myeloma cells. Restoring or enhancing the killing effect of NK cells on myeloma cells is an important strategy for MM immunotherapy.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:
Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
With upfront use of triplet- and quadruplet-based regimens coupled with autologous stem cell transplant (ASCT) and maintenance lenalidomide, a high proportion of multiple myeloma (MM) patients are achieving deep and durable responses. Yet, myeloma invariably relapses, with refractoriness to one or more drugs at first relapse. This therapeutic gap has been partially filled by T-cell engager (TCE) therapies that have demonstrated remarkable response rates and prolonged remissions in heavily pretreated patients with MM, providing off-the-shelf immunotherapy options leading to the U.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Center for Early Detection and Interception of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. Electronic address:
Precursor plasma cell disorders include monoclonal gammopathy of undermined significance (MGUS) and smoldering multiple myeloma (SMM). These conditions carry a variable risk of progression to symptomatic myeloma and there are ongoing efforts to improve risk stratification to identify patients that are at highest risk of progression. Advanced imaging plays a crucial role in diagnosis and monitoring, and more sensitive tools to measure serum monoclonal proteins and circulating tumor cells are being developed.
View Article and Find Full Text PDF