Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Valve interstitial cells (VICs) play a critical role in aortic valve calcification and angiogenic processes associated with calcific aortic valve stenosis (CAVS). Within the same valve, VICs from differently calcified regions can exhibit diverse phenotypic and functional properties. We hypothesised that VICs isolated from noncalcified (NC-VICs) and calcified (C-VICs) areas of human aortic valves possess distinct angiogenic characteristics. In this study, we isolated C-VICs and NC-VICs from 23 valves obtained after aortic valve replacement due to CAVS. Both VIC types exhibited similar phenotypes in culture, characterised by morphology, expression of mesenchymal/fibroblastic markers, proliferation and osteogenic differentiation. No significant differences were observed in the secretion of angiogenic factors, including VEGF-A, Ang-1, Ang-2, PlGF, bFGF between NC-VICs and C-VICs. However, when co-injected with endothelial colony-forming cells (ECFCs) into Matrigel implants in vivo in mice, implants containing NC-VICs showed significantly higher microvessel density compared to those with C-VICs (p < 0.001). Additionally, NC-VICs co-cultured with ECFCs expressed significantly higher levels of the perivascular markers αSMA and calponin compared to C-VICs (p < 0.001 and p < 0.05, respectively). In conclusion, our study reveals the heterogeneity in VIC plasticity within the aortic valve during CAVS. The diminished capacity of VICs from calcified areas to differentiate into perivascular cells suggests a loss of function as valve disease progresses. Furthermore, the ability of VICs to undergo perivascular differentiation may provide insights into valve homeostasis, angiogenesis and the exacerbation of calcification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955408PMC
http://dx.doi.org/10.1111/jcmm.70511DOI Listing

Publication Analysis

Top Keywords

aortic valve
16
valve interstitial
8
interstitial cells
8
calcific aortic
8
valve stenosis
8
valve
7
aortic
5
unveiling angiogenic
4
angiogenic potential
4
potential functional
4

Similar Publications

[The TAVI heart team].

Herz

September 2025

Department of Cardiology, Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Deutschland.

Since the earliest studies on transcatheter aortic valve implantation (TAVI), the heart team concept has been an integral component of treatment planning for patients with aortic valve stenosis (AS). The primary objective is to ensure patient-specific, guideline-based treatment through the structured involvement of all relevant medical disciplines. The TAVI heart team is strongly recommended with a class I indication in both European and US clinical guidelines.

View Article and Find Full Text PDF

Introduction: Whilst aortic stenosis remains the most prevalent valvular abnormality, the management of asymptomatic severe aortic stenosis remains a clinical challenge. Recently, two randomised-controlled trials (RCTs) - EVOLVED (Early Intervention in Patients With Asymptomatic Severe Aortic Stenosis and Myocardial Fibrosis) and Early TAVR (Transcatheter Aortic-Valve Replacement for Asymptomatic Severe Aortic Stenosis) - have been published, alongside an extended follow-up from the AVATAR (Aortic Valve Replacement Versus Conservative Treatment in Asymptomatic Severe Aortic Stenosis) study.

Evidence Acquisition: In response, we conducted a systematic review of PubMed, Ovid, and Cochrane databases, identifying RCTs up to October 29, 2024, that compared early intervention with conventional management.

View Article and Find Full Text PDF

We describe a modified Park's stitch technique incorporating systematic free margin alignment to achieve complete elimination of aortic regurgitation in patients with a left ventricular assist device. The technique involves a two-step approach: first, free margin alignment of all three cusps using single interrupted 6-0 polypropylene sutures placed at the nodules of Arantius to achieve precise coaptation, followed by conventional Park's stitch using mattress sutures with autologous pericardial pledgets for central closure. The alignment sutures remain in place to provide reinforcement.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF

Objective: Valve selection in acute type A aortic dissection (ATAAD) requiring aortic root replacement is challenging given the clinical acuity, unknown patient preferences, risk of surgical bleeding, and limited life expectancy. We sought to identify long-term outcomes of mechanical versus bioprosthetic aortic root replacement in young patients with ATAAD.

Methods: Retrospective review of our institution's database of ATAAD was conducted to identify patients aged 65 years and younger who underwent mechanical Bentall (mech-Bentall) or bioprosthetic Bentall (bio-Bentall) for ATAAD from 2002 to 2022.

View Article and Find Full Text PDF