98%
921
2 minutes
20
Deep learning-based computer vision technology significantly improves the accuracy and efficiency of crop disease detection. However, the scarcity of crop disease images leads to insufficient training data, limiting the accuracy of disease recognition and the generalization ability of deep learning models. Therefore, increasing the number and diversity of high-quality disease images is crucial for enhancing disease monitoring performance. We design a frequency-domain and wavelet image augmentation network with a dual discriminator structure (FHWD). The first discriminator distinguishes between real and generated images, while the second high-frequency discriminator is specifically used to distinguish between the high-frequency components of both. High-frequency details play a crucial role in the sharpness, texture, and fine-grained structures of an image, which are essential for realistic image generation. During training, we combine the proposed wavelet loss and Fast Fourier Transform loss functions. These loss functions guide the model to focus on image details through multi-band constraints and frequency domain transformation, improving the authenticity of lesions and textures, thereby enhancing the visual quality of the generated images. We compare the generation performance of different models on ten crop diseases from the PlantVillage dataset. The experimental results show that the images generated by FHWD contain more realistic leaf disease lesions, with higher image quality that better aligns with human visual perception. Additionally, in classification tasks involving nine types of tomato leaf diseases from the PlantVillage dataset, FHWD-enhanced data improve classification accuracy by an average of 7.25% for VGG16, GoogleNet, and ResNet18 models.Our results show that FHWD is an effective image augmentation tool that effectively addresses the scarcity of crop disease images and provides more diverse and enriched training data for disease recognition models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955132 | PMC |
http://dx.doi.org/10.1186/s13007-025-01361-0 | DOI Listing |
Front Microbiol
August 2025
College of Plant Protection, Southwest University, Chongqing, China.
Root-knot nematodes (RKNs), particularly , are one of the most destructive plant-parasitic nematodes (PPNs) affecting crop production worldwide. Previous earlier study revealed that calcinated oyster shell powder (OSP) possessed excellent suppression of tobacco RKN disease. However, the suppression mechanism of OSP against RKNs still remains unrevealed.
View Article and Find Full Text PDFPlant Dis
September 2025
USDA-ARS US Vegetable Laboratory, U.S. Vegetable Laboratory, 2700 Savanah Hwy, Charleston, South Carolina, United States, 29414;
Green fruit anthracnose caused by the fungus Colletotrichum scovillei is an emerging disease on various types of peppers (Capsicum spp.) in the eastern United States. Sixteen cultivars, representing 11 horticultural fruit types from four species of Capsicum, C.
View Article and Find Full Text PDFPlant Dis
September 2025
Anhui Academy of Agricultural Sciences, Institute of Plant Protection and Agro-Products Safety, Nongkenan 40, Luyang District, Hefei, Anhui province,China, Hefei, Anhui Province, China, 230031;
Since its emergence in 2020, a novel bacterial leaf blight caused by Pantoea ananatis has posed a serious threat to rice production in Anhui Province, China. Through verification via Koch's postulates and three years of field monitoring, P. ananatis strain HQ01 was identified as the dominant pathogen, exhibiting high virulence even at low inoculum concentrations (10² CFU/mL).
View Article and Find Full Text PDFSci China Life Sci
September 2025
MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.
View Article and Find Full Text PDFPhytopathology
September 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Fusarium crown rot (FCR) is a soilborne disease that occurs in many cereal-growing regions in the world. An association between FCR development and drought stress has long been known. The FCR symptoms are pronounced under drought stress in both fields and controlled environments.
View Article and Find Full Text PDF