Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Traditionally, strain-induced moiré patterns at the friction interface can produce superlubrication. Here, we construct moiré patterns on the surface of a two-layer MoS substrate through applying biaxial strain to the bottom layer of the substrate and investigate the effect of moiré patterns on friction energy dissipation. Results indicate friction enhances nonmonotonically with an increase of strain. Notably, two types of frictional dissipation channels have been discovered, corresponding to washboard and moiré-washboard frequencies. Based on this discovery, we determine that the nonmonotonic increase in friction is the result of coupling enhancement of the two dissipative channels and nonmonotonic change in moiré surface roughness. Moreover, friction gradually evolves into a monotonic increase with strain as the adhesion factor between substrate layers enhances. This is because strong interlayer interaction leads to an extremely low moiré barrier, which in turn makes moiré-surface roughness vary minimally, and thus the coupling of two dissipative channels plays a dominant role in friction. Our observations provide strategies for actively controlling friction in 2D material systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c01833 | DOI Listing |