98%
921
2 minutes
20
The development of multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters exhibiting high efficiency, narrowband emission, rapid reverse intersystem crossing rate (k), and suppressed concentration quenching simultaneously is of great significance yet a formidable challenge. Herein, an effective strategy is presented to realize the above target by synergizing multiple charge-transfer excited states, including short-range charge transfer (SRCT), through-bond charge transfer (TBCT), and through-space charge transfer (TSCT). The proof-of-concept emitter 4tCz2B exhibits a bright green emission with a narrow full width at half maximum (FWHM) of 21 nm (0.10 eV) in solution, high photoluminescence quantum yield of 97%, fast k of 7.8 × 10 s and significantly suppressed concentration quenching in film state. As a result, the sensitizer-free organic light-emitting diodes (OLEDs) achieve maximum external quantum efficiencies (EQES) of over 34.5% together with an unaltered emission peak at 508 nm and FWHM of 26 nm at doping concentrations ranging from 3 to 20 wt.%. Even at a doping ratio of 50 wt.%, EQE is still as high as 25.5%. More importantly, the non-sensitized devices exhibit significantly reduced efficiency roll-offs, with a minimum value of 13.4% at a brightness of 1000 cd m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202500269 | DOI Listing |
J Phys Chem Lett
September 2025
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States.
Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Inverted quantum dot light-emitting diodes (QLEDs) show great promise for next-generation displays due to their compatibility with integrated circuit architectures. However, their development has been hindered by inefficient exciton utilization and charge transport imbalance. Here, we present a strategy for regulating charge-exciton dynamics through the rational design of a multifunctional hole transport layer (HTL), incorporating polyethylenimine ethoxylated (PEIE) as a protective interlayer in fully-solution-processed inverted red QLEDs.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
We investigate the ability of Aufbau suppressed coupled cluster theory to act as a post-linear-response correction to widely used linear response methods for electronically excited states. We find that the theory is highly resilient to shortcomings in the underlying linear response method, with final results from less accurate starting points nearly as good as those from the best starting points. This pattern is especially stark in charge transfer states, where the approach converts starting points with multi-eV errors into post-linear-response results with errors on the order of 0.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).
View Article and Find Full Text PDF