98%
921
2 minutes
20
Targeted amplicon sequencing is a powerful and efficient tool for interrogating the Plasmodium falciparum genome, generating actionable data from infections to complement traditional malaria epidemiology. For maximum impact, genomic tools should be multi-purpose, robust, sensitive, and reproducible. We developed, characterized, and implemented MADHatTeR, an amplicon sequencing panel based on Multiplex Amplicons for Drug, Diagnostic, Diversity, and Differentiation Haplotypes using Targeted Resequencing, along with a bioinformatic pipeline for data analysis. Additionally, we introduce an analytical approach to detect gene duplications and deletions from amplicon sequencing data. Laboratory control and field samples were used to demonstrate the panel's high sensitivity and robustness. MADHatTeR targets 165 highly diverse loci, focusing on multiallelic microhaplotypes, key markers for drug and diagnostic resistance (including duplications and deletions), and CSP and potential vaccine targets. The panel can also detect non-falciparum Plasmodium species. MADHatTeR successfully generated data from low-parasite-density dried blood spot and mosquito midgut samples and detected minor alleles at within-sample allele frequencies as low as 1% with high specificity in high-parasite-density dried blood spot samples. Gene deletions and duplications were reliably detected in mono- and polyclonal controls. Data generated by MADHatTeR were highly reproducible across multiple laboratories. The successful implementation of MADHatTeR in five laboratories, including three in malaria-endemic African countries, showcases its feasibility and reproducibility in diverse settings. MADHatTeR is thus a powerful tool for research and a robust resource for malaria public health surveillance and control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953298 | PMC |
http://dx.doi.org/10.1038/s41598-025-94716-5 | DOI Listing |
Front Microbiol
August 2025
Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.
Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Bacterial Resistance Research Laboratory (LABRESIS), Hospital de clínicas de Porto Alegre (HCPA), Experimental Research Center, Porto Alegre, Brazil.
Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
British Antarctic Survey, Cambridge, UK.
To date, environmental conditions have been enough to act as an effective barrier to prevent non-indigenous species from arriving and establishing in Arctic Canada. However, rapidly changing climatic conditions are creating more suitable habitats for non-indigenous species to potentially establish and become invasive. Concurrently, shipping traffic in parts of Arctic Canada has increased by over 250% since 1990, providing an effective vector for transporting non-indigenous species to the region.
View Article and Find Full Text PDFHelicobacter
September 2025
Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.
Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.
Microbes Environ
September 2025
Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University.
Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.
View Article and Find Full Text PDF