Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Tuberculosis (TB) is an infectious disease transmitted through the respiratory system that affects people worldwide. Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, has been shown to have highly variable protective efficacy in different populations and is ineffective at protecting adults. Therefore, the development of more effective TB vaccines is vital.

Methods: Three dominant antigens (ESAT6, CFP10, and MPT64) from the region of difference were selected for this study. Their physicochemical properties, spatial structures, and immune responses were evaluated using bioinformatics screening of dominant T cell and B cell epitopes. Three vaccine constructs were developed. After selecting the appropriate linkers, their physicochemical properties, spatial structures, and immune responses of the vaccines were evaluated, and molecular dynamics simulations were performed to test their ability to bind to major histocompatibility complex (MHC) receptors within 100 ns. This process aimed to create highly antigenic vaccine constructs capable of eliciting an immune response. The effects of the vaccine constructs on the host immune response were assessed using enzyme-linked immunosorbent assays, flow cytometry, and hematoxylin and eosin staining.

Results: A novel peptide vaccine, designated ECM-64, was developed by screening six immunodominant peptides from three antigens and constructing independent T-epitope and B-epitope vaccines. Compared weith BCG-immunized mice, ECM-64-immunized mice exhibited a substantial augmentation in Th1/Th2 cytokine secretion and CD3CD4T and CD3CD8T lymphocyte counts. ECM-64-specific IgG and IgG1 antibodies were produced after immunization. The immunoinformatics findings were largely consistent with those obtained from the analysis of immunized mice.

Conclusion: ECM-64 is a promising multipeptide TB vaccine with the advantage of inducing high levels of Th1/Th2 cytokines, antibodies, and CD3CD4T and CD3CD8T lymphocytes in mice. This study also provides preliminary evidence that bioinformatic methods can be used to screen for dominant epitopes. These findings lay the groundwork for the development of peptide-based TB vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2025.114531DOI Listing

Publication Analysis

Top Keywords

vaccine constructs
12
peptide vaccine
8
physicochemical properties
8
properties spatial
8
spatial structures
8
structures immune
8
immune responses
8
immune response
8
cd3cd4t cd3cd8t
8
vaccine
7

Similar Publications

Polyunsaturated fatty acids (PUFAs), fatty acids with multiple unsaturated carbon-carbon bonds, constitute a crucial class of lipids. While the vast diversity of PUFA species arises from their structural variations, most of them are poorly investigated due to their limited availability. Here, we utilize solid-phase synthesis of PUFAs, which we have recently developed, to construct a PUFA library.

View Article and Find Full Text PDF

Identification of multifunctional T-cell peptide epitopes for the development of DNA vaccines against dengue virus.

Hum Vaccin Immunother

December 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Background: A significant surge in pertussis cases since early 2023 has raised serious public health concerns. To investigate the potential mechanisms contributing to this increased prevalence, we collected throat swab specimens from children exhibiting pertussis symptoms and conducted detailed molecular characterization.

Methods: All Bordetella pertussis (B.

View Article and Find Full Text PDF

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF