Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The electrochemical synthesis of hydrogen peroxide (HO) via the two-electron oxygen reduction reaction (2e ORR) is a promising alternative to the conventional anthraquinone method. However, due to local alkalinization near the catalyst surface, the restricted oxygen replenishment and insufficient activated water molecule supply limit the formation of the key *OOH intermediate. Herein, a pulsed electrocatalysis approach based on a structurally optimized S/N/O tridoped hollow carbon bowl catalyst has been proposed to overcome this challenge. In an H-type electrolytic cell, the pulsed method achieves a superior HO yield rate of 55.6 mg h mg, approximately 1.6 times higher than the conventional potentiostatic method (34.2 mg h mg), while maintaining the Faradaic efficiency above 94.6%. characterizations, finite element simulations, and density functional theory analyses unveil that the application of pulsed potentials mitigates the local OH concentration, enhances the water activation and proton generation, and facilitates oxygen production within the hollow bowl-like carbon structure. These effects synergistically accelerate the formation kinetics of the *OOH intermediate by the efficient generation of *O and *HO intermediates, leading to superior HO yields. This work develops a strategy to tune catalytic environments for diverse catalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c01453 | DOI Listing |