Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Galangin (GAL), a flavonol found in Alpinia officinarum and propolis, is a promising functional food. This study investigated the therapeutic effects and mechanisms of GAL in mice with hyperuricemic nephropathy (HN) by focusing on renal metabolomics and network pharmacology. In this study, we conducted untargeted metabolomic analysis and network pharmacology prediction. Subsequently, a compound-reaction-enzyme-gene network was constructed based on the results of metabolomics and network pharmacology to elucidate potential connections. The results demonstrated that GAL can improve renal interstitial fibrosis and inflammatory infiltration and reduce serum levels of uric acid (UA), urea nitrogen (UREA), and creatinine (CREA). Metabolome analysis indicated that GAL affected thiamine, pyrimidine, nicotinate, nicotinamide, pyruvate, glyoxylate, and dicarboxylate metabolism. Network pharmacology and experimental results showed that GAL reduced the key target expression of the tumor protein P53 (TP53), tumor necrosis factor (TNF), signal transducer and activator of transcription 3 (STAT3), heat shock protein 90 alpha family class A member 1 (HSP90aa1), albumin (ALB), and caspase-3 (CASP3). GAL also downregulated the expression of Janus kinase 2 (JAK2), phospho-JAK2 (P-JAK2), and phospho-STAT3 (P-STAT3). Furthermore, a joint analysis of the metabolome and network pharmacology showed that GAL can reverse HN through amino acid metabolism, nucleotide metabolism, energy metabolism, and endocrine system pathways. GAL can alleviate HN effectively and might play synergistic therapeutic roles through regulating metabolic profiles and the JAK2/STAT3 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.70029 | DOI Listing |