98%
921
2 minutes
20
Whole-genome resequencing (WGRS) is a critical branch of whole-genome sequencing (WGS), primarily targeting species with existing reference genomes. By aligning sequencing data to the reference genome, WGRS enables precise detection of genetic variations in individuals or populations. As a core technology in genomic research, WGS holds profound significance in ruminant studies. It not only reveals the intricate structure of ruminant genomes but also provides essential data for deciphering gene function, variation patterns, and evolutionary processes, thereby advancing the exploration of ruminant genetic mechanisms. However, WGS still faces several challenges, such as incomplete and inaccurate genome assembly, as well as the incomplete annotation of numerous unknown genes or gene functions. Although WGS can identify a vast number of genomic variations, the specific relationships between these variations and phenotypes often remain unclear, which limits its potential in functional studies and breeding applications. By performing WGRS on multiple samples, these assembly challenges can be effectively addressed, particularly in regions with high repeat content or complex structural variations. WGRS can accurately identify subtle variations among different individuals or populations and further elucidate their associations with specific traits, thereby overcoming the limitations of WGS and providing more precise genetic information for functional research and breeding applications. This review systematically summarizes the latest applications of WGRS in the analysis of ruminant genetic structures, genetic diversity, economic traits, and adaptive traits, while also discussing the challenges faced by this technology. It aims to provide a scientific foundation for the improvement and conservation of ruminant genetic resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939356 | PMC |
http://dx.doi.org/10.3390/ani15060831 | DOI Listing |
Environ Microbiol Rep
October 2025
Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.
Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.
View Article and Find Full Text PDFHepatitis E virus (HEV) has emerged as a major agent of acute viral hepatitis, with zoonotic genotype 4 (HEV-4) representing a public health concern in China. In this study, we integrated province-wide enhanced hepatitis E surveillance data and molecular profiling from Shandong Province of eastern China, 2019-2023, with the aim of elucidating the epidemiology, genetic diversity, and clinical correlations of autochthonous HEV infections. In total, 5826 cases were reported during the study period, with 72.
View Article and Find Full Text PDFEnviron Microbiol
September 2025
Listeria: Biology and Infection Research Group (LisBio), Valencia, Spain.
Listeria monocytogenes is a saprophytic bacterium and a foodborne pathogen of humans and animals. Little is known about its distribution and genetic diversity across different environments within the same geographical region. We conducted a large-scale longitudinal study in southeastern Spain monitoring Listeria spp.
View Article and Find Full Text PDFMol Genet Genomics
September 2025
Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
The aim of this study was to investigate three unrelated Simmental calves with atypical white coat color, identify potential genetic causes using a trio-based whole-genome sequencing approach, and assess the prevalence of the identified variants in the breed. Several inherited alleles affecting coat color, ranging from fawn to red spotted and white-headed, have been described in Simmental cattle originating from Switzerland. However, no genetic variant has yet been associated with an almost completely white coat in this breed.
View Article and Find Full Text PDFJ Dairy Sci
September 2025
Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, Guizhou, China. Elec
Buckwheat is a common straw crop that contains an abundance of flavonoids and could be used as an antioxidant additive in animal diets. In this study, the effects of a commercial buckwheat rhizome flavonoid extract (BRFE) on milk production, plasma pro-oxidant and antioxidant, the ruminal metagenome, and ruminal metabolites in dairy goats were evaluated. Forty healthy, multiparous, nonpregnant Guanzhong dairy goats were blocked by DIM (122 ± 5.
View Article and Find Full Text PDF