Effect and Mechanism of Extract on UVA and UVB Radiation-Induced Skin Aging.

J Microbiol Biotechnol

School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510000, P.R. China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultraviolet (UV) radiation often causes skin aging, inflammation, cancer and other related skin diseases. In this study, the main components of extract (TME) were identified using UPLC-Q-TOF-MS, and their anti-photoaging effects were assessed through UV-induced cell and animal models. The key components identified were D-mannitol (27.41%), DL-malic acid (14%), alginate (12.5%), isoleucine (4.82%), and phenylalanine (4.31%), all of which played roles in anti-aging and UV protection. TME (50-100 mg/ml) significantly alleviated UVA/UVB-induced erythema and wrinkles in mice. Pathological staining showed that TME suppressed UV-induced epidermal hyperplasia ( < 0.05), reduced collagen damage ( < 0.01), and decreased mast cell infiltration ( < 0.01), while down-regulating inflammatory markers such as IL-6, IL-1β, and TNF-α. TME also upregulated type I collagen (COL-1). Flow cytometry results demonstrated that high-dose TME inhibited UV-induced apoptosis and reduced reactive oxygen species (ROS) in HaCaT cells ( < 0.05). Immunofluorescence and scratch migration assays showed that TME promoted PPAR-α expression, reduced inflammation, and supported skin repair ( < 0.01). Transcriptomic and metabolomic analyses indicated that TME regulated inflammation-related signaling pathways, helping to prevent skin aging. TME is a promising natural product for skin care and treatment of oxidative stress and inflammation-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985413PMC
http://dx.doi.org/10.4014/jmb.2411.11085DOI Listing

Publication Analysis

Top Keywords

skin aging
12
tme
8
skin
6
mechanism extract
4
extract uva
4
uva uvb
4
uvb radiation-induced
4
radiation-induced skin
4
aging ultraviolet
4
ultraviolet radiation
4

Similar Publications

Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.

View Article and Find Full Text PDF

Study Design: Concurrent mixed methods case series.

Objectives: To examine the feasibility and effect of a peer-facilitated, remote handcycling sport program on physical, psychological, and social health of individuals with spinal cord injury or disease (SCI/D) aged ≥50 years.

Setting: Participants' homes.

View Article and Find Full Text PDF

Introduction: Facial aging is a multifactorial process characterized by skin laxity, volume loss, and collagen degradation. Calcium Hydroxyapatite (CaHA) is a versatile biostimulatory filler that can provide both structural support and collagen stimulation. This study evaluates a novel technique using CaHA with tailored dilutions for minimally invasive facial rejuvenation, focusing on key ligamentous structures.

View Article and Find Full Text PDF

Persistent Nodules on Necklines Following Hyaluronic Acid Filler: A Case Report.

J Cosmet Dermatol

September 2025

Department of Dermatology, College of Medicine, Imam Mohammad Bin Saud University, Riyadh, Saudi Arabia.

Background: Necklines are a common complaint in patients as they are a sign of aging. Hyaluronic acid (HA) fillers are widely used to address volume loss and linear depressions. HA fillers are safe, effective, and versatile, but their use for necklines is not well-documented in the literature.

View Article and Find Full Text PDF

Thunberg root extract inhibits atopic dermatitis-like skin symptoms.

Allergol Immunopathol (Madr)

September 2025

Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, Republic of Korea;

Thunberg is a perennial herbaceous plant of the genus that belongs to the Apiaceae family and is effective in improving inflammation, gout, and dizziness. However, the skin pruritus improvement effect and mechanism of action of Thunberg root extract (PJRE) have not yet been reported. We investigated the effects of PJRE on the regulation of pruritus and inflammatory responses in compound 48/80 (C48/80)-treated mice, phorbol 12-myristate 13-acetate (PMA)/A23187-induced human skin mast cells, and LPS-stimulated mouse macrophages.

View Article and Find Full Text PDF