98%
921
2 minutes
20
Electrical stimulation of peripheral nerves is used to treat a variety of disorders and conditions. While conventional biphasic pulse stimulation typically induces neural activity in fibers, kilohertz (kHz) continuous stimulation can block neural conduction, offering a promising alternative to drug-based therapies for alleviating abnormal neural activity. This study explores strategies to enhance the selectivity and control of high-frequency neural conduction block using intrafascicular electrodes.experiments were conducted in a rodent model to assess the effects of kHz stimulation delivered via longitudinal intrafascicular electrodes (LIFEs) on motor axons within the tibial and common peroneal fascicles of the sciatic nerve.We demonstrated that a progressive and selective block of neural conduction is achievable with LIFEs. We showed that the amount of neural conduction block can be tuned by adjusting the amplitude and frequency of kHz stimulation. Additionally, we achieved interfascicular selectivity with intrafascicular electrodes, with this selectivity being modulated by the kHz stimulation frequency. We also observed a small amount of onset response spillover, which could be minimized by increasing the blocking stimulus frequency. Muscle fatigue was quantified during kHz continuous stimulation and compared to control scenarios, revealing that the muscle was able to recover from fatigue during the block, confirming a true block of motor neurons.Our findings show that kHz stimulation using LIFEs can be precisely controlled to achieve selective conduction block. By leveraging existing knowledge from conventional stimulation techniques, this approach allows for the development of stimulation protocols that effectively block abnormal neural patterns with reduced side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969234 | PMC |
http://dx.doi.org/10.1088/1741-2552/adc62a | DOI Listing |
Commun Biol
September 2025
Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg - Martinsried, Germany.
The internal resistance of axons to ionic current flow determines action potential conduction velocity. Although mitochondria support axonal function, axons have been modeled as organelle-free cables, and mitochondrial impact on conduction velocity, specifically by increasing internal resistance, remains understudied. We combine computational modeling and electron microscopy of forebrain premotor axons controlling birdsong production.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Clinically, even in patients diagnosed with non-obstructive azoospermia, spermatogenesis may be present in some seminiferous tubules, which gives the patient hope of having biological offspring of his own. However, there is still a blank for high-precision detection technologies to support accurate diagnosis and effective treatment. In this work, we successfully developed a minimally invasive fine needle detection memristive device that features a structure composed of Ag/CH-MnO/FTO by utilizes the organic-inorganic heterojunction as functional layer.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Electronic Information & Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
September 2025
Biomedical Engineering Program (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Evidence on regional muscle excitation within hamstrings remains controversial, primarily because information derived solely from surface electromyograms (sEMG) amplitude does not necessarily provide an accurate estimate of neural drive to the muscle. To address this limitation, this study investigated whether there are proximodistal differences in motor unit properties of the biceps femoris long head during isometric hip extension and knee flexion tasks. Seventeen resistance-trained males performed isometric knee flexion and hip extension tasks at 20 % and 40 % of maximal voluntary contraction.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University Shijiazhuang 050017 China
Myocardial infarction (MI) is one of the leading causes of heart failure and death worldwide. While conventional treatments have limitations in promoting myocardial repair and regeneration, hydrogel, as a multifunctional biomaterial, shows great potential in MI treatment due to its unique physicochemical properties and biocompatibility. This paper reviews the multifunctional applications of hydrogels in MI therapeutics, including drug delivery (miRNAs, exosomes, ), electrical conduction, immunomodulation, detection, tissue engineering, and microfluidic functions.
View Article and Find Full Text PDF