Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neural interfacing technologies, combined with biospecific targeting and neuroelectrochemical analysis, provide a powerful platform for advancing the understanding of neural communication at the single-cell level. A key factor in this integration is the role of protein-mediated cell adhesion at the cell-electrode interface, which can influence cellular processes such as exocytosis. However, the specific impact of this interaction remains largely unexplored. In this study, a biospecific electrode platform functionalized with genetically engineered neuroligin-2 (eNLG2) is developed and its effect on exocytosis in PC12 cells is investigated. The findings reveal that eNLG2-modified electrodes significantly slowed exocytosis kinetics and increased the amount of neurotransmitters released per event compared to non-protein-modified and laminin-modified electrodes. These results suggest that synaptic membrane proteins, such as neuroligin and neurexin, modulate vesicle fusion dynamics likely by influencing membrane properties and intracellular signaling. This study highlights the potential of combining biospecific neural interfacing technologies with neuroelectrochemical approaches to gain comprehensive insights into exocytosis and neural communication.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202411284DOI Listing

Publication Analysis

Top Keywords

synaptic membrane
8
neural interfacing
8
interfacing technologies
8
neural communication
8
distinct exocytosis
4
exocytosis behavior
4
behavior synaptic
4
membrane protein-protein
4
protein-protein coupled
4
coupled cell-electrode
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression.

View Article and Find Full Text PDF

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.

View Article and Find Full Text PDF

The emergence of electrical activity in human brain organoids.

Stem Cell Reports

September 2025

Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy. Electronic address:

Human brain organoids, generated from pluripotent stem cells, recapitulate fundamental features of human brain development, including neuronal diversity, regional architecture, and functional network activity. Integrated multimodal and transcriptomic analyses reveal a molecular repertoire of ionotropic receptors supporting action potentials, synaptic transmission, and oscillatory dynamics resembling early brain activity. This review synthesizes current knowledge on the molecular and electrophysiological determinants of neuronal maturation and network computations, from synaptic integration to large-scale dynamics.

View Article and Find Full Text PDF

Mitochondrial membrane potential and compartmentalized signaling: Calcium, ROS, and beyond.

Redox Biol

September 2025

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA. Electronic address:

Mitochondria are central to cellular function, acting as metabolic hubs that regulate energy transduction to communicate cellular status. A key component of this energetic regulation is the mitochondrial membrane potential (MMP), a charge separation across the inner mitochondrial membrane generated by the electron transport chain. Beyond MMP's canonical role in driving ATP synthesis, MMP acts as a dynamic signaling hub.

View Article and Find Full Text PDF