98%
921
2 minutes
20
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading chronic liver disease characterized by chronic inflammation. Regulatory T cells (Tregs) highly express CD73 and play a critical role in modulating the immune response. However, the roles and mechanisms by which CD73 modulates Tregs in MASLD are still unknown. A choline-deficient high-fat diet (CDHFD) or methionine/choline-deficient diet (MCD) was used to establish a MASLD model. We found that CD73 expression was upregulated in Tregs via the FFA-mediated p38/GATA2 signaling pathway. Cd73 KO promoted MASLD progression, accompanied by decreased Treg viability and activity. Compared with Cd73 KO Tregs, adoptively transferred WT Tregs exhibited increased Treg activity and provided greater protection against hepatic inflammatory responses in MASLD. This immune protection is mediated by CD73 via both enzymatic and nonenzymatic pathways, degrading AMP into ADO to increase Treg function and block DR5-TRAIL-mediated cell death signaling. These findings suggest a potential immunotherapeutic approach for MASLD treatment and highlight its possible relevance for clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002957 | PMC |
http://dx.doi.org/10.1016/j.molmet.2025.102131 | DOI Listing |
J Steroid Biochem Mol Biol
September 2025
Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:
7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Faculty of Applied Ecology, Agricultural Science and Biotechnology, University of Inland Norway, Elverum, Norway.
Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China. Electronic address:
Selenite contamination poses a significant environmental risk due to its high toxicity, mobility, and bioavailability, and further threatens ecological stability and human health via biological accumulation in trophic chains. Microbial transformation of selenite into selenium nanoparticles (SeNPs) represents a promising and sustainable bioremediation strategy. However, the underlying mechanisms in environmentally prevalent yeasts remain largely uncharacterized.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia.
Introduction: Heavy metal pollution threatens ecosystems and agriculture, necessitating affordable solutions.
Methods: We evaluated the combined effect of β-sitosterol (Bs, 100 mg L) and eucalyptus biochar (Eb, 10%) on bamboo ( f. ) under copper stress (100 and 200 mg L Cu).
J Extracell Vesicles
September 2025
Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
Extracellular vesicles (EVs) are small anuclear cellular membrane encapsulated fragments of importance for cellular interaction and transfer of information. These small vesicles, diverse in size and functionality, can be obtained from cells, tissues and bodily fluids. A complicated step for obtaining EVs from whole organs is understanding the optimal methodology for organ processing.
View Article and Find Full Text PDF