98%
921
2 minutes
20
Lumacaftor and Ivacaftor are two FDA-approved medications currently used to treat cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel located in epithelial cell membranes; however, the detailed mechanism(s) of their action remains to be elucidated. Both drugs, termed modulators, bind CFTR at a protein-lipid interface, yet Lumacaftor acts at the endoplasmic reticulum (ER), while Ivacaftor acts at the plasma membrane (PM). A major difference among biological membranes is their level of cholesterol (viz., the ER, 5% cholesterol; the Golgi apparatus, 12.5%; and the PM, 30%). Therefore, we investigated the ability of each molecule to interact with membranes of the corresponding cholesterol content to determine if lipid cholesterol content provides a physical basis for their observed localized activity. Using differential scanning calorimetry and a terbium-based liposome disruption assay, we show that both Lumacaftor (a corrector) and Ivacaftor (a potentiator) penetrate/diffuse through membranes containing high cholesterol concentrations, such as in Golgi and the PM. The results further suggest that (1) Lumacaftor resides within membranes containing 5% cholesterol, supporting the proposition that Lumacaftor acts as a corrector of the CFTR channel at the ER level where the nascent protein is in its initial folding stage; and (2) Ivacaftor is well-suited to penetrate the PM and reach its binding pocket on CFTR. Our findings provide evidence that membrane cholesterol levels significantly modulate CFTR corrector/potentiator activity and consequently may affect sensitivity to clinical therapeutics in CF patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.4c00780 | DOI Listing |
Sci Prog
September 2025
Shenzhen University Sixth Affiliated Hospital, Shenzhen Nanshan People's Hospital, Shenzhen, China.
Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
September 2025
School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China.
Atherosclerosis remains a leading cause of cardiovascular disease and mortality worldwide, despite advancements in statin therapies. Here, we aimed to identify potential anti-atherosclerosis drugs by an integrated approach combining network medicine-based prediction with empirical validation. Among the top drugs predicted by the preferred algorithm, mesalazine─a drug traditionally used to treat inflammatory bowel disease, was selected for in vivo validation in ApoE mouse model of atherosclerosis.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.
View Article and Find Full Text PDF