98%
921
2 minutes
20
Despite growing knowledge of the underlying neurobiology of autism spectrum disorder (ASD) and related neurogenetic syndromes, treatment discovery has remained elusive. In this review, we provide a blueprint for translational precision medicine in ASD and related neurogenetic syndromes. The discovery of trofinetide for Rett syndrome (RTT) is described, and the role of nonmammalian, mammalian, and stem cell model systems in the identification of molecular targets and drug screening is discussed. We then provide a framework for translating preclinical findings to human clinical trials, including the role of biomarkers in selecting molecular targets and evaluating target engagement, and discuss how to leverage these findings for future ASD drug development. Multiple preclinical model systems for ASD have been developed, each with tradeoffs with regard to suitability for high-throughput small molecule screening, conservation across species, and behavioral face validity. Future clinical trials should incorporate biomarkers and intermediate phenotypes to demonstrate target engagement. Factors that contributed to the approval of trofinetide for RTT included replicated findings in mouse models, a well-studied natural history of the syndrome, development of RTT-specific outcome measures, and strong engagement of the RTT family community. The translation of our growing understanding of the neurobiology of ASD to human drug discovery will require a precision medicine approach, including the use of multiple model systems for molecular target selection, evaluation of target engagement, and clinical trial design strategies that address heterogeneity, power, and the placebo response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344128 | PMC |
http://dx.doi.org/10.1089/cap.2025.0023 | DOI Listing |
Genome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
Geroscience
September 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Department of Radiation Oncology, Vithas La Milagrosa University Hospital, Madrid, 28010, Spain.
This narrative review analyzes current evidence comparing single-session and two-session approaches in Stereotactic Body Radiation Therapy (SBRT) and high-dose-rate (HDR) brachytherapy for localized prostate cancer. These ultra-hypofractionated strategies deliver high-precision ablative doses while minimizing exposure to normal tissues. SBRT regimens with fewer than five fractions show tumor control comparable to conventional treatments, offering reduced treatment burden and increased convenience.
View Article and Find Full Text PDFBariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.
View Article and Find Full Text PDFAesthetic Plast Surg
September 2025
Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Shanghai, 200092, China.
Background: The integration of digital tools in aesthetic medicine has enhanced the precision of facial feature analysis. Using concepts like the Golden Ratio, these technologies enable more objective assessments of facial proportions and symmetry. The beauty scanner-face analyzer (BS-FA) app offers a digital approach to evaluate geometric proportions and facial alignment, providing valuable data for preoperative planning in plastic surgery and aesthetic treatments.
View Article and Find Full Text PDF