98%
921
2 minutes
20
Multiple resonance (MR) thermally activated delayed fluorescence (TADF) materials hold significant potential for applications in high color purity and highly efficient organic light-emitting diodes (OLEDs). However, their inherently large planar structures often result in severe aggregation-induced quenching and slow spin-flip processes, presenting significant challenges that limit their practical applications. In this study, we designed and synthesized two MR-TADF molecules, tCON-Cz and tCON-2tBuCz, by incorporating a tCON backbone with carbazole or 3,6-di--butylcarbazole at the ortho position of the phenyl ring. This strategic design introduces a highly twisted three-dimensional structure, effectively mitigating aggregation-induced quenching. Additionally, it creates a through-space charge transfer channel that facilitates reverse intersystem crossing, thereby enhancing TADF efficiency. As a result, both molecules exhibit high photoluminescence quantum yields. When incorporated into devices, these OLEDs demonstrated remarkable performance, achieving high external quantum efficiencies of 23.70% for tCON-Cz and 22.84% for tCON-2tBuCz at doping concentrations as high as 20%. Notably, both devices retained the narrow full width at half-maximum of around 36 nm, consistent with the parent tCON skeleton, ensuring superior color purity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c00907 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Perylene diimide (PDI) radical anions have attracted increasing attention as hypoxia-responsive photothermal agents due to their strong near-infrared (NIR) absorption and efficient photothermal conversion. However, their biomedical application is often limited by aggregation-induced quenching and poor structural tunability. In this work, we report a rationally engineered four-arm PDI derivative (PDI-4Alky·4Cl) bearing terminal alkyne groups, which not only suppresses π-π stacking steric and electrostatic repulsion, but also serves as a versatile molecular scaffold for further functionalization.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
Background: Of the mycotoxins, aflatoxin is the most significant. The detection of aflatoxin B1 (AFB1) is crucial for ensuring food safety, as this highly carcinogenic toxin readily contaminates crops such as grains and nuts, and timely detection can effectively prevent associated health risks. The selection of luminophores is of paramount importance in the detection of ECL (electrochemiluminescence).
View Article and Find Full Text PDFAnal Chem
September 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
Rational design of both mechanistic pathways and material compositions is essential to advance COF-based electrochemiluminescence (ECL) systems. In this study, aggregation-induced emission covalent organic framework (AIE-COF) nanoprobes with excellent ECL performance were developed based on Tb-functionalized covalent organic framework (Tb@A-COF). The Tb@A-COF system demonstrates enhanced ECL performance through synergistic integration of three complementary mechanisms: (1) (4',4',4',4'-(1,2-ethenediylidene)tetrakis [1,1'-biphenyl]-4-carboxaldehyde (ETBC) ligands function as antenna-like sensitizers that amplify luminescence intensity by 14.
View Article and Find Full Text PDFAnal Methods
September 2025
Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Self-assembly is regarded as a facile method to fabricate luminescent nanomaterials with aggregation induced emission (AIE) properties for optical sensor design. In this work, a pH-controlled self-ratiometric sensing platform utilizing aggregation-induced emission (AIE)-active Au(I)-TCEP-Cd(II) nanoaggregates was developed for highly reliable D-penicillamine (DPA) detection. Through stoichiometric coordination with Cd, oligomeric Au(I)-tris(2-carboxyethyl)phosphine (TCEP) complexes could self-assemble into snowflake-like nanoaggregates (∼100 nm) with strong yellow emission (540 nm) and excellent aqueous stability.
View Article and Find Full Text PDF