Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Honey has been recognised for centuries for its potential therapeutic properties, and its application in wound healing has gained attention due to its antimicrobial, anti-inflammatory, and regenerative properties. With the rapid increase in multidrug resistance, there is a need for new or alternative approaches to traditional antibiotics. This paper focuses on the physicochemical changes that occur when formulating honey into Pluronic F127 hydrogels. The manual incorporation of honey, irrespective of quality type, presented the amelioration of Pluronic's capacity to undergo sol-gel transitions, as investigated by parallel plate rheology. This novel finding was attributed to the formation of fractal aggregates via the hydrogen-bonding-induced irreversible aggregation of honey-PF127 micelles, which subsequently dominate the entire hydrogel system to form a gel. The hydrogen bonding of micelles was identified through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Light Scattering (DLS). This is the first known study to provide physicochemical insight into the effects that honey incorporation has on the thermogelation capacity of Pluronic F127 hydrogels for downstream dermal wound applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941932PMC
http://dx.doi.org/10.3390/gels11030215DOI Listing

Publication Analysis

Top Keywords

pluronic f127
8
f127 hydrogels
8
honey
5
effects encapsulating
4
encapsulating bioactive
4
bioactive irish
4
irish honey
4
honey pluronic-based
4
pluronic-based thermoresponsive
4
thermoresponsive hydrogels
4

Similar Publications

Copper ions have been considered to hold promise for the treatment of wound infections due to their unique characteristics that exhibit not only antibacterial activities through multiple bactericidal mechanisms but also tissue reparative activities by acting as a co-factor for many angiogenic promoters and enzymes. However, higher doses are necessary to achieve sufficient bactericidal and antibiofilm effects. The objective of this study is to develop copper nanoparticles (CuNPs) as an antimicrobial agent by harnessing the characteristics of copper and vitamin C (VC) to form a sustained catalytic cycle, leading to a significant enhancement of bactericidal and antibiofilm effects when compared with the use of CuNPs alone.

View Article and Find Full Text PDF

Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.

View Article and Find Full Text PDF

PurposeTo evaluate the safety and ability of an ophthalmic solution containing Poloxamer 407 and Polyquaternium 133 to reduce conjunctival bacterial load before cataract surgery.MethodsPatients (n = 74) were randomized to 2 groups: treatment (n = 37) or placebo (treatment's vehicle; (n = 37)) BID from V1 to V3. Patients were also given standard postoperative treatment from V2 to V3.

View Article and Find Full Text PDF

Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.

View Article and Find Full Text PDF

The study explored HSPiP and QbD-(quality by design) enabled optimized cubosomes for sustained drug release, improved permeation, and enhanced oral bioavailability. OCUB1 (the optimized product) was characterized for size, zeta potential (ZP), thermal analysis, and surface roughness. drug release and hemolysis studies were carried out using a dialysis membrane and rat erythrocytes (4 % suspension), respectively.

View Article and Find Full Text PDF