Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins evolve through complex sequence spaces, with fitness landscapes serving as a conceptual framework that links sequence to function. Fitness landscapes can be smooth, where multiple similarly accessible evolutionary paths are available, or rugged, where the presence of multiple local fitness optima complicate evolution and prediction. Indeed, many proteins, especially those with complex functions or under multiple selection pressures, exist on rugged fitness landscapes. Here we discuss the theoretical framework that underpins our understanding of fitness landscapes, alongside recent work that has advanced our understanding─particularly the biophysical basis for smoothness versus ruggedness. Finally, we address the rapid advances that have been made in computational and experimental exploration and exploitation of fitness landscapes, and how these can identify efficient routes to protein optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.4c00673DOI Listing

Publication Analysis

Top Keywords

fitness landscapes
24
computational experimental
8
experimental exploration
8
fitness
7
landscapes
6
exploration protein
4
protein fitness
4
landscapes navigating
4
navigating smooth
4
smooth rugged
4

Similar Publications

, a hemibiotrophic ascomycete, is the causal agent of apple scab, a major disease affecting apple production worldwide. The widespread use of fungicides in orchard management has led to the selection of resistant strains. To limit the spread of these resistant strains, it is essential to understand their competitive fitness within the population.

View Article and Find Full Text PDF

Aquatic microorganisms typically inhabit a heterogeneous resource landscape, composed of localized and transient patches. To effectively exploit these resources, they have evolved a wide range of feeding strategies that combine chemotactic motility with active feeding flows. However, there is a notable lack of experimental studies that examine how these active flows shape resource fields to optimize feeding.

View Article and Find Full Text PDF

Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.

Cancer Discov

September 2025

Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.

Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.

View Article and Find Full Text PDF

Uncovering differential tolerance to deletions versus substitutions with a protein language model.

Cell Syst

September 2025

Diabetes Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA; Department of Bioengineering & Therapeutic

Deep mutational scanning (DMS) experiments have been successfully leveraged to understand genotype to phenotype mapping. However, the overwhelming majority of DMS have focused on amino acid substitutions. Thus, it remains unclear how indels differentially shape the fitness landscape relative to substitutions.

View Article and Find Full Text PDF

Family breakup dynamics in mammals can be complex due to competing interests between parents and offspring. Parents need to balance their own as well as their offspring's fitness through either terminating care early or extending care. Yet, males can disrupt this trade-off as they may force females to focus on future litters by separating or killing offspring, especially in species where sexually selected infanticide occurs.

View Article and Find Full Text PDF