A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Model development and validation for predicting small-cell lung cancer bone metastasis utilizing diverse machine learning algorithms based on the SEER database. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this study was to devise a machine learning algorithm with superior performance in predicting bone metastasis (BM) in small cell lung cancer (SCLC) and create a straightforward web-based predictor based on the developed algorithm. Data comprising demographic and clinicopathological characteristics of patients with SCLC and their potential BM were extracted from the Surveillance, Epidemiology, and End Results database between 2010 and 2018. This data was then utilized to develop 12 machine learning algorithm models: support vector machine, logistic regression, NaiveBayes, extreme gradient boosting, decision tree, random forest, ExtraTrees, LightGBM, GradientBoosting, AdaBoost, MLP, and k-nearest neighbor. The models were compared and evaluated using various metrics, including accuracy, precision, recall rate, F1-score, the area under the receiver operating characteristic curve (AUC) value, and the Brier score. The objective was to predict the likelihood of BM in SCLC patients based on their demographic and clinicopathological features. The best-performing model was then chosen, and the associations between the clinicopathological characteristics and the target variable (presence or absence of BM) were interpreted based on this model. This analysis aimed to provide insights into the factors that may influence the risk of BM in SCLC patients. A total of 89,366 SCLC patients were included in this study, and among them, 8269 (9.25%) patients developed BM. The age, T stage, N stage, liver metastasis, lung metastasis, marital status, income, M stage, American Joint Committee on Cancer stage, and brain metastasis were identified as independent risk factors for SCLC. Among the various predictive models evaluated, the machine learning model utilizing the XGB algorithm showed the highest performance in both internal and external data validation, achieving AUC scores of training set AUC: 0.965, validation set AUC: 0.962, and testing set AUC: 0.961. Subsequently, the XGB algorithm was utilized to develop a web-based predictor for BM in patients with SCLC. This study has developed a web-based predictor utilizing the XGB algorithm to forecast the risk of BM in SCLC patients, aiming to provide doctors with valuable assistance in clinical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936617PMC
http://dx.doi.org/10.1097/MD.0000000000041987DOI Listing

Publication Analysis

Top Keywords

machine learning
16
sclc patients
16
web-based predictor
12
xgb algorithm
12
set auc
12
lung cancer
8
bone metastasis
8
learning algorithm
8
sclc
8
demographic clinicopathological
8

Similar Publications